Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries

Hang Liu , Ruohan Yu , Xiaoqi Luo , Di Wu , Dongxue Wang , Jinsong Wu , Liang Zhou , Jinping Liu , Jianlong Xia

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12785

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12785 DOI: 10.1002/eem2.12785
RESEARCH ARTICLE

Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries

Author information +
History +
PDF

Abstract

Organic electrode materials (OEMs) constitute an attractive class of energy storage materials for potassium-ion batteries, but their application is severely hindered by sluggish kinetics and limited capacities. Herein, inorganic molecules covalent combination strategy is proposed to drive advanced potassium organic batteries. Specifically, molecular selenium, possessing high potential of conductivity and electroactivity, is covalently bonded with organic matrix, that is symmetrical selenophene-annulated dipolyperylene diimide (PDI2-2Se), is designed to verify the feasibility. The inorganic-anchored OEM (PDI2-2Se) can be electrochemically activated to form organic (PDI2 matrix)–inorganic (Se) hybrids during initial cycles. State-of-the-art 3D tomography reveals that a “mutual-accelerating” effect was realized, that is, the 10-nm Se quantum dots, possessing high conductivity, facilitate charge transfer in organics as well store K+-ions, and organic PDI2 matrix benefits the encapsulation of Se, thereby suppressing shuttle effect and volume fluctuation during cycling, endowing resulting PDI2/Se hybrids with both high-rate capacities and longevity. The concept of inorganic-configurated OEM through covalent bonds, in principle, can also be extended to design novel functional organic-redox electrodes for other high-performance secondary batteries.

Keywords

3D tomography / covalent combination of inorganics / in situ electrochemical activation / organic electrode materials / potassium organic batteries

Cite this article

Download citation ▾
Hang Liu, Ruohan Yu, Xiaoqi Luo, Di Wu, Dongxue Wang, Jinsong Wu, Liang Zhou, Jinping Liu, Jianlong Xia. Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries. Energy & Environmental Materials, 2025, 8(1): e12785 DOI:10.1002/eem2.12785

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S.Li, J.Huang, Y.Cui, S. Liu, Z.Chen, W.Huang, C.Li, R.Liu, R. Fu, D.Wu, Nat. Nanotechnol. 2022, 17, 613.

[2]

Y.Lu, J.Chen, Nat. Rev. Chem. 2020, 4, 127.

[3]

Y.Huang, Interdiscip. Mater. 2022, 1, 323.

[4]

L.Tu, Z.Zhang, Z.Zhao, X. Xiang, B.Deng, D.Liu, D.Qu, H.Tang, J. Li, J.Liu, Angew. Chem. Int. Ed. 2023, 62, e202306325.

[5]

D.Wang, X.You, M.Wu, H.Huang, L.Chen, D. Wu, J.Xia, ACS Appl. Mater. Interfaces 2021, 13, 16396.

[6]

X.-L.Chen, M.Xie, Z.-L.Zheng, X. Luo, H.Jin, Y.-F.Chen, G.-Z.Yang, D.-S.Bin, D. Li, J. Am. Chem. Soc. 2023, 145, 5105.

[7]

R.Zhang, J.Huang, W.Deng, J. Bao, Y.Pan, S.Huang, C. F.Sun, Angew. Chem. Int. Ed. 2019, 131, 16626.

[8]

M.Wu, Z.Zhou, Interdiscip. Mater. 2023, 2, 231.

[9]

A.Yu, Q.Pan, M.Zhang, D. Xie, Y.Tang, Adv. Funct. Mater. 2020, 30, 2001440.

[10]

Y.Hu, W.Tang, Q.Yu, X.Wang, W.Liu, J. Hu, C.Fan, Adv. Funct. Mater. 2020, 30, 2000675.

[11]

Y.Hong, J.Hu, W.Tang, B. Wei, M.Guo, S.Jia, C.Fan, Energy Stor. Mater. 2022, 52, 61.

[12]

Y.Hu, Q.Yu, W.Tang, M. Cheng, X.Wang, S.Liu, J.Gao, M.Wang, M. Xiong, J.Hu, Energy Stor. Mater. 2021, 41, 738.

[13]

J.Lee, H.Lim, J.Park, M. S. Kim, J. W.Jung, J.Kim, I. D.Kim, Adv. Energy Mater. 2023, 13, 2300442.

[14]

S.He, Y.Zou, K.Chen, S. P. Jiang, Interdiscip. Mater. 2023, 2, 111.

[15]

X.Yang, L.Gong, X.Liu, P. Zhang, B.Li, D.Qi, K.Wang, F.He, J.Jiang, Angew. Chem. Int. Ed. 2022, 61, e202207043.

[16]

X. X.Luo, W. H.Li, H. J.Liang, H. X. Zhang, K. D.Du, X. T.Wang, X. F.Liu, J. P.Zhang, X. L. Wu, Angew. Chem. Int. Ed. 2022, 134, e202117661.

[17]

H.Kang, Q.Chen, Q.Ma, L.Zhang, Q.Yang, H. Li, X.Xie, S.Lan, C.Zhang, J. Power Sources 2022, 545, 231951.

[18]

Q. Q.Sun, T.Sun, J. Y.Du, K. Li, H. M.Xie, G.Huang, X. B.Zhang, Adv. Mater. 2023, 35, 2301088.

[19]

N.Liu, X.Wu, Y.Zhang, Y. Yin, C.Sun, Y.Mao, L.Fan, N.Zhang, Adv. Sci. 2020, 7, 2000146.

[20]

X.Wang, Y.Liu, Z.Wei, J. Hong, H.Liang, M.Song, Y.Zhou, X.Huang, Adv. Mater. 2022, 34, 2206812.

[21]

M.Mao, S.Wang, Z.Lin, T. Liu, Y. S.Hu, H.Li, X.Huang, L.Chen, L. Suo, Adv. Mater. 2021, 33, 2005781.

[22]

P.Han, F.Liu, Y.Zhang, Y. Wang, G.Qin, L.Hou, C.Yuan, Angew. Chem. Int. Ed. 2021, 60, 23596.

[23]

H.Liu, M.Cheng, Z.Tian, L. Cui, D.Wu, D.Wang, L.Zhou, J.Xia, Adv. Funct. Mater. 2023, 33, 2306424.

[24]

S.-C.Wu, Z.Lai, R.Dong, S.-Y. Tang, K.Wang, T.-Y.Yang, Y.-C.Shen, H.-J.Liao, T.-Y. Su, C.-R.Cheng, Nano Energy 2023, 110, 108273.

[25]

P.Xiong, Y.Wu, Y.Liu, R. Ma, T.Sasaki, X.Wang, J.Zhu, Energy Environ. Sci. 2020, 13, 4834.

[26]

Y.Liu, Z.Tai, Q.Zhang, H. Wang, W. K.Pang, H. K.Liu, K.Konstantinov, Z.Guo, Nano Energy 2017, 35, 36.

[27]

K.Grenader, M.Kind, L.Silies, A. Peters, J. W.Bats, M.Bolte, A.Terfort, J. Mol. Struct. 2013, 1039, 61.

[28]

J. K.Kim, Y. C.Kang, ACS Nano 2020, 14, 13203.

[29]

J.Ding, Y.Wang, Z.Huang, W. Song, C.Zhong, J.Ding, W.Hu, ACS Appl. Mater. Interfaces 2022, 14, 6828.

[30]

Z.Kong, L.Wang, S.Iqbal, B. Zhang, B.Wang, J.Dou, F.Wang, Y.Qian, M. Zhang, L.Xu, Small 2022, 18, 2107252.

[31]

Z.Qu, X.Zhang, R.Huang, S. Wu, R.Chen, F.Wu, L.Li, Nano Lett. 2022, 22, 4115.

[32]

B.Pei, D.Liu, Z.Tian, J. Huang, ChemistrySelect 2022, 7, e202200656.

[33]

X.Yang, L.Gong, K.Wang, S. Ma, W.Liu, B.Li, N.Li, H.Pan, X. Chen, H.Wang, Adv. Mater. 2022, 34, 2207245.

[34]

X.Tang, H.Wang, J.Fan, L.-P. Lv, W.Sun, Y.Wang, Chem. Eng. J. 2022, 430, 133023.

[35]

J.Zou, K.Fan, X.Wang, Y. Chen, Y.Cao, H.Dai, C.Zhang, M.Fu, Y.Gao, H.Liu, Chem. Eng. J. 2023, 460, 141703.

[36]

H.Jiang, S.Zhang, L.Yan, Y. Xing, Z.Zhang, Q.Zheng, J.Shen, X.Zhao, L. Wang, Adv. Sci. 2023, 10, 2206587.

[37]

Y.Tan, F.An, Y.Liu, S. Li, P.He, N.Zhang, P.Li, X.Qu, J. Power Sources 2021, 492, 229655.

[38]

Y.Song, S.Bai, L.Zhu, M. Zhao, D.Han, S.Jiang, Y.-N.Zhou, ACS Appl. Mater. Interfaces 2018, 10, 13606.

[39]

Q.Liu, W.Deng, Y.Pan, C.-F. Sun, Chem. Sci. 2020, 11, 6045.

[40]

M.Kim, G. D.Park, Y. C.Kang, Int. J. Energy Res. 2022, 46, 5800.

[41]

H.Wang, F.Liu, R.Yu, J.Wu, Interdiscip. Mater. 2022, 1, 196.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/