Enhanced Structure/Interfacial Properties of Single-Crystal Ni-Rich LiNi0.92Co0.04Mn0.04O2 Cathodes Synthesized Via LiCl-NaCl Molten-Salt Method

Ye-Wan Yoo , Chea-Yun Kang , Hyun-Kyung Kim , Jong-Kyu Lee , Ramachandran Vasant Kumar , Kyong-Nam Kim , Jung-Rag Yoon , Seung-Hwan Lee

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12778

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12778 DOI: 10.1002/eem2.12778
RESEARCH ARTICLE

Enhanced Structure/Interfacial Properties of Single-Crystal Ni-Rich LiNi0.92Co0.04Mn0.04O2 Cathodes Synthesized Via LiCl-NaCl Molten-Salt Method

Author information +
History +
PDF

Abstract

Arising from the increasing demand for electric vehicles (EVs), Ni-rich LiNixCoyMnzO2 (NCM, x + y + z = 1, x ≥ 0.8) cathode with greatly increased energy density are being researched and commercialized for lithium-ion batteries (LIBs). However, parasitic crack formation during the discharge–charge cycling process remains as a major degradation mechanism. Cracking leads to increase in the specific surface area, loss of electrical contact between the primary particles, and facilitates liquid electrolyte infiltration into the cathode active material, accelerating capacity fading and decrease in lifetime. In contrast, Ni-rich NCM when used as a single crystal exhibits superior cycling performances due to its rigid mechanical property that resists cracking during long charge–discharge process even under harsh conditions. In this paper, we present comparative investigation between single crystal Ni-rich LiNi0.92Co0.04Mn0.04O2 (SC) and polycrystalline Ni-rich LiNi0.92Co0.04Mn0.04O2 (PC). The relatively improved cycling performances of SC are attributed to smaller anisotropic volume change, higher reversibility of phase transition, and resistance to crack formation. The superior properties of SC are demonstrated by in situ characterization and battery tests. Consequently, it is inferred from the results obtained that optimization of preparation conditions can be regarded as a key approach to obtain well crystallized and superior electrochemical performances.

Keywords

cathode materials / lithium-ion batteries / Ni-rich layered oxide / single crystal / transition metal ions

Cite this article

Download citation ▾
Ye-Wan Yoo, Chea-Yun Kang, Hyun-Kyung Kim, Jong-Kyu Lee, Ramachandran Vasant Kumar, Kyong-Nam Kim, Jung-Rag Yoon, Seung-Hwan Lee. Enhanced Structure/Interfacial Properties of Single-Crystal Ni-Rich LiNi0.92Co0.04Mn0.04O2 Cathodes Synthesized Via LiCl-NaCl Molten-Salt Method. Energy & Environmental Materials, 2025, 8(1): e12778 DOI:10.1002/eem2.12778

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.-H. Ryu, B. Namkoong, J.-H. Kim, I. Belharouak, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2021, 6, 2726.

[2]

D.-Y. Hwang, S.-J. Sim, B.-S. Jin, H.-S. Kim, S.-H. Lee, ACS Appl. Energy Mater. 2021, 4, 1743.

[3]

F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Nat. Commun. 2014, 5, 3529.

[4]

P. Pang, X. Tan, Z. Wang, Z. Cai, J. Nan, Z. Xing, H. Li, Electrochim. Acta 2021, 365, 137380.

[5]

W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. Engl. 2015, 54, 4440.

[6]

G. Qian, Y. Zhang, L. Li, R. Zhang, J. Xu, Z. Cheng, S. Xie, H. Wang, Q. Rao, Y. He, Y. Shen, L. Chen, M. Tang, Z.-F. Ma, Energy Storage Mater. 2020, 27, 140.

[7]

Z. Chen, J. Wang, D. Chao, T. Baikie, L. Bai, S. Chen, Y. Zhao, T. C. Sum, J. Lin, Z. Shen, Sci. Rep. 2016, 6, 25771.

[8]

H. H. Sun, H.-H. Ryu, U.-H. Kim, J. A. Weeks, A. Heller, Y.-K. Sun, C. B. Mullins, ACS Energy Lett. 2020, 5, 1136.

[9]

S. S. Zhang, Energy Storage Mater. 2020, 24, 247.

[10]

W. Zhao, L. Zou, H. Jia, J. Zheng, D. Wang, J. Song, C. Hong, R. Liu, W. Xu, Y. Yang, J. Xiao, C. Wang, J.-G. Zhang, ACS Appl. Energy Mater. 2020, 3, 3369.

[11]

Z. Feng, R. Ranjusha, S. Zhang, D. Sun, Y. Tang, Y. Ren, H. Wang, Adv. Sci. 2021, 8, 2001809.

[12]

J. Wang, Y. Nie, C. Miao, Y. Tan, M. Wen, W. Xiao, J. Colloid Interface Sci. 2021, 601, 853.

[13]

M. Jeong, H. Kim, W. Lee, S.-J. Ahn, E. Lee, W.-S. Yoon, J. Power Sources 2020, 474, 228592.

[14]

D. Y. Hwang, S. H. Lee, Int. J. Energy Res. 2022, 46, 2064.

[15]

F. Z. Gadouche, A. Kabir, S. Siouane, C. Sedrati, A. Bouabellou, G. Schmerber, Trans. Electr. Electron. Mater. 2023.

[16]

J. Zhu, G. Chen, J. Mater. Chem. A 2019, 7, 5463.

[17]

J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho, Adv. Energy Mater. 2018, 8, 1702028.

[18]

W. H. Kan, B. Deng, Y. Xu, A. K. Shukla, T. Bo, S. Zhang, J. Liu, P. Pianetta, B.-T. Wang, Y. Liu, Chem 2018, 4, 2108.

[19]

F. Li, L. Kong, Y. Sun, Y. Jin, P. Hou, J. Mater. Chem. A 2018, 6, 12344.

[20]

J. Li, A. R. Cameron, H. Li, S. Glazier, D. Xiong, M. Chatzidakis, J. Allen, G. Botton, J. Dahn, J. Electrochem. Soc. 2017, 164, A1534.

[21]

L. Wang, B. Wu, D. Mu, X. Liu, Y. Peng, H. Xu, Q. Liu, L. Gai, F. Wu, J. Alloys Compd. 2016, 674, 360.

[22]

S. L. Spence, Z. Xu, S. Sainio, D. Nordlund, F. Lin, Inorg. Chem. 2020, 59, 10591.

[23]

J. Lamb, K. Jarvis, A. Manthiram, Small 2022, 18, 2106927.

[24]

Y. Shi, G. Chen, F. Liu, X. Yue, Z. Chen, ACS Energy Lett. 2018, 3, 1683.

[25]

J. Zheng, P. Yan, L. Estevez, C. Wang, J.-G. Zhang, Nano Energy 2018, 49, 538.

[26]

H. Qian, H. Ren, Y. Zhang, X. He, W. Li, J. Wang, J. Hu, H. Yang, H. M. K. Sari, Y. Chen, Electrochem. Energy Rev. 2022, 5, 2.

[27]

X. Huang, P. Zhang, Z. Liu, B. Ma, Y. Zhou, X. Tian, ChemElectroChem 2022, 9, e202100756.

[28]

B. Ma, X. Huang, Z. Liu, X. Tian, Y. Zhou, J. Mater. Sci. 2022, 57, 2857.

[29]

F. Li, Y. Y. Sun, Z. H. Yao, J. S. Cao, Y. L. Wang, S. H. Ye, Electrochim. Acta 2015, 182, 723.

[30]

Y. Kim, ACS Appl. Mater. Interfaces 2012, 4, 2329.

[31]

L. Ni, R. Guo, W. Deng, B. Wang, J. Chen, Y. Mei, J. Gao, X. Gao, S. Yin, H. Liu, Chem. Eng. J. 2022, 431, 133731.

[32]

A. Mesnier, A. Manthiram, J. Power Sources 2023, 586, 233681.

[33]

T. Kimijima, N. Zettsu, K. Teshima, Cryst. Growth Des. 2016, 16, 2618.

[34]

D. E. Bugaris, H. C. Zur Loye, Angew. Chem. Int. Ed. 2012, 51, 3780.

[35]

K. Shishino, T. Yamada, K. Fujisawa, M. Motoi, T. Hatakeyama, K. Teshima, ACS Appl. Energy Mater. 2022, 5, 2747.

[36]

R. Sijia, T. Leiwu, S. Qinjun, C. Jian, Energy Storage Sci. Technol. 2020, 9, 1702.

[37]

H. Jeon, D.-H. Kwon, H. Kim, J.-H. Lee, Y. Jun, J.-W. Son, S. Park, Chem. Eng. J. 2022, 445, 136828.

[38]

R. Fantin, E. Trevisanello, R. Ruess, A. Pokle, G. Conforto, F. H. Richter, K. Volz, J. R. Janek, Chem. Mater. 2021, 33, 2624.

[39]

A. C. Wagner, N. Bohn, H. Geßwein, M. Neumann, M. Osenberg, A. Hilger, I. Manke, V. Schmidt, J. R. Binder, ACS Appl. Energy Mater. 2020, 3, 12565.

[40]

F. Wang, M. Ge, S. Wi, X. Liu, J. Bai, S. Ehrlich, D. Lu, W.-K. Lee, Z. Chen, Angew. Chem. Int. Ed. Engl. 2020, 464, 228207.

[41]

B. You, Z. Wang, F. Shen, Y. Chang, W. Peng, X. Li, H. Guo, Q. Hu, C. Deng, S. Yang, Small Methods 2021, 5, 2100234.

[42]

W. Weppner, R. A. Huggins, J. Electrochem. Soc. 1977, 124, 1569.

[43]

S.-B. Kim, H. Kim, D.-H. Park, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-H. Moon, J.-H. Choi, K.-W. Park, J. Power Sources 2021, 506, 230219.

[44]

J. Kim, S. Park, S. Hwang, W.-S. Yoon, J. Electrochem. Sci. Technol. 2022, 13, 19.

[45]

S. Na, K. Park, Int. J. Energy Res. 2022, 46, 7389.

[46]

B. Du, Y. Mo, D. Li, B. Cao, Y. Chen, H. Zhen, ACS Appl. Mater. Interfaces 2022, 14, 6729.

[47]

K. Dai, J. Mao, Z. Li, Y. Zhai, Z. Wang, X. Song, V. Battaglia, G. Liu, J. Power Sources 2014, 248, 22.

[48]

X. Kong, Y. Zhang, J. Li, H. Yang, P. Dai, J. Zeng, J. Zhao, Chem. Eng. J. 2022, 434, 134638.

[49]

H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, J. Power Sources 2013, 233, 121.

[50]

J. Chen, H. Yang, T. Li, C. Liu, H. Tong, J. Chen, Z. Liu, L. Xia, Z. Chen, J. Duan, Front. Chem. 2019, 7, 500.

[51]

H. H. Ryu, K. J. Park, D. R. Yoon, A. Aishova, C. S. Yoon, Y. K. Sun, Adv. Energy Mater. 2019, 9, 1902698.

[52]

S. Jamil, G. Wang, L. Yang, X. Xie, S. Cao, H. Liu, B. Chang, X. Wang, J. Mater. Chem. A 2020, 8, 21306.

[53]

J. Zuo, J. Wang, R. Duan, Y. Bai, K. Xu, K. Zhang, J. Wang, K. Zhang, Z. Yang, Z. Yang, Nano Energy 2024, 121, 109214.

[54]

L. Li, G. Hu, Y. Cao, D. Gong, Q. Fu, Z. Peng, K. Du, Electrochim. Acta 2022, 435, 141386.

[55]

G. Liu, M. Li, N. Wu, L. Cui, X. Huang, X. Liu, Y. Zhao, H. Chen, W. Yuan, Y. Bai, J. Electrochem. Soc. 2018, 165, A3040.

[56]

Q. Xu, X. Li, H. M. K. Sari, W. Li, W. Liu, Y. Hao, J. Qin, B. Cao, W. Xiao, Y. Xu, Nano Energy 2020, 77, 105034.

[57]

J. Yang, Y. Xia, ACS Appl. Mater. Interfaces 2016, 8, 1297.

[58]

Z. Zhang, B. Hong, M. Yi, X. Fan, Z. Zhang, X. Huang, Y. Lai, Chem. Eng. J. 2022, 445, 136825.

[59]

W. Zhu, P. Hovington, S. Bessette, D. Clément, C. Gagnon, V. Gariépy, M. Provencher, M.-C. Mathieu, M. L. Trudeau, A. Vijh, J. Electrochem. Soc. 2021, 168, 100526.

[60]

S. Park, C. Jo, H. J. Kim, S. Kim, S.-T. Myung, H.-K. Kang, H. Kim, J. Song, J. Yu, K. Kwon, J. Alloys Compd. 2020, 835, 155342.

[61]

X. Deng, R. Zhang, K. Zhou, Z. Gao, W. He, L. Zhang, C. Han, F. Kang, B. Li, Energy Environ. Mater. 2022, 6, e12331.

[62]

X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nat. Commun. 2021, 12, 5320.

[63]

A. O. Kondrakov, H. Geßwein, K. Galdina, L. De Biasi, V. Meded, E. O. Filatova, G. Schumacher, W. Wenzel, P. Hartmann, T. Brezesinski, J. Phys. Chem. C 2017, 121, 24381.

[64]

J. Li, H. Hua, X. Kong, H. Yang, P. Dai, J. Zeng, J. Zhao, Energy Storage Mater. 2022, 46, 90.

[65]

H. Wang, X. Li, F. Li, X. Liu, S. Yang, J. Ma, Electrochem. Commun. 2021, 122, 106870.

[66]

X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du, K. Chen, S. Huang, G. Jia, F. Li, X. Wang, Small 2019, 15, 1900269.

[67]

Q. Zhang, K. Liu, C. Li, S. Tan, L. Li, X.-G. Sun, W. Li, X. Liu, J. Zhang, S. Dai, Nano Energy 2021, 86, 106096.

[68]

A. Nurpeissova, D.-I. Park, S.-S. Kim, Y.-K. Sun, J. Electrochem. Soc. 2015, 163, A171.

[69]

L. Feng, Y. Liu, D. Zhang, L. Wu, W. Qin, Vacuum 2021, 188, 110168.

[70]

H. J. Guo, Y. Sun, Y. Zhao, G. X. Liu, Y. X. Song, J. Wan, K. C. Jiang, Y. G. Guo, X. Sun, R. Wen, Angew. Chem. Int. Ed. 2022, 61, e202211626.

[71]

C. Liu, K. Qian, D. Lei, B. Li, F. Kang, Y.-B. He, J. Mater. Chem. A 2018, 6, 65.

[72]

C. Wang, Y. S. Meng, K. Xu, J. Electrochem. Soc. 2019, 166, A5184.

[73]

N. Phillip, PhD Degree Thesis, The University of Tennessee (Knoxville) 2019.

[74]

R. Zhang, C. Wang, M. Ge, H. L. Xin, Nano Lett. 2022, 22, 3818.

[75]

S. Klein, P. Bärmann, L. Stolz, K. Borzutzki, J.-P. Schmiegel, M. Börner, M. Winter, T. Placke, J. Kasnatscheew, ACS Appl. Mater. Interfaces 2021, 13, 57241.

[76]

O. C. Harris, S. E. Lee, C. Lees, M. Tang, J. Phys. Energy 2020, 2, 32002.

[77]

R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Electrochem. Soc. 2017, 164, A1361.

[78]

J. Betz, J. P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek, M. C. Stan, M. Winter, T. Placke, Adv. Energy Mater. 2019, 9, 1900574.

[79]

D.-S. Ko, J.-H. Park, S. Park, Y. N. Ham, S. J. Ahn, J.-H. Park, H. N. Han, E. Lee, W. S. Jeon, C. Jung, Nano Energy 2019, 56, 434.

[80]

A. T. S Freiberg, M. K. Roos, J. Wandt, R. de Vivie-Riedle, H. A. Gasteiger, Chem. Eur. J. 2018, 122, 8828.

[81]

B. Zhu, Z. Yu, L. Meng, Z. Xu, C. Lv, Y. Wang, G. Wei, J. Qu, Ionics 2021, 27, 2749.

[82]

L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek, H. Ehrenberg, Adv. Mater. 2019, 31, 1900985.

[83]

R. Jung, F. Linsenmann, R. Thomas, J. Wandt, S. Solchenbach, F. Maglia, C. Stinner, M. Tromp, H. A. Gasteiger, J. Electrochem. Soc. 2019, 166, A378.

[84]

S. Klein, P. Harte, J. Henschel, P. Bärmann, K. Borzutzki, T. Beuse, S. van Wickeren, B. Heidrich, J. Kasnatscheew, S. Nowak, Adv. Energy Mater. 2021, 11, 2003756.

[85]

Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J.-G. Zhang, Science 2020, 370, 1313.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/