Boron Nitride-Integrated Lithium Batteries: Exploring Innovations in Longevity and Performance

Shayan Angizi , Sayed Ali Ahmad Alem , Mahdi Torabian , Maryam Khalaj , Dmitri Golberg , Amir Pakdel

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12777

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) :e12777 DOI: 10.1002/eem2.12777
REVIEW

Boron Nitride-Integrated Lithium Batteries: Exploring Innovations in Longevity and Performance

Author information +
History +
PDF

Abstract

The current global warming, coupled with the growing demand for energy in our daily lives, necessitates the development of more efficient and reliable energy storage devices. Lithium batteries (LBs) are at the forefront of emerging power sources addressing these challenges. Recent studies have shown that integrating hexagonal boron nitride (h-BN) nanomaterials into LBs enhances the safety, longevity, and electrochemical performance of all LB components, including electrodes, electrolytes, and separators, thereby suggesting their potential value in advancing eco-friendly energy solutions. This review provides an overview of the most recent applications of h-BN nanomaterials in LBs. It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications. Subsequently, it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations, offering valuable insights into the potential of BN nanomaterials. The review then proceeds to outline the functions of h-BN in LB components, emphasizing the molecular-level mechanisms responsible for performance improvements. Finally, the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.

Keywords

electrode / electrolyte / hexagonal boron nitride / lithium battery / separator

Cite this article

Download citation ▾
Shayan Angizi, Sayed Ali Ahmad Alem, Mahdi Torabian, Maryam Khalaj, Dmitri Golberg, Amir Pakdel. Boron Nitride-Integrated Lithium Batteries: Exploring Innovations in Longevity and Performance. Energy & Environmental Materials, 2024, 7(6): e12777 DOI:10.1002/eem2.12777

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Yoshino, Angew. Chem. Int. Ed. Engl. 2012, 51, 5798.

[2]

M. A. Hannan, M. S. H. Lipu, A. Hussain, A. Mohamed, Renew. Sust. Energ. Rev. 2017, 78, 834.

[3]

J. O. M. Bockris, in Electrochemical Science for a Sustainable Society: A Tribute to John O’M Bockris (Ed: K. Uosaki), Springer International Publishing, Cham 2017, pp. 1–21.

[4]

T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, Q. Chen, Trans. Tianjin Univ. 2020, 26, 208.

[5]

S. Z. Golkhatmi, M. Khalaj, A. Izadpanahi, A. Sedghi, Solid State Sci. 2020, 106, 106336.

[6]

S. Z. Golkhatmi, A. Sedghi, H. N. Miankushki, M. Khalaj, Energy 2021, 214, 118950.

[7]

M. Khalaj, S. Z. Golkhatmi, A. Sedghi, Diam. Relat. Mater. 2021, 114, 108313.

[8]

M. Khalaj, A. Sedghi, H. N. Miankushki, S. Z. Golkhatmi, Energy 2019, 188, 116088.

[9]

S. Angizi, P. R. Selvaganapathy, P. Kruse, Carbon 2022, 194, 140.

[10]

S. Angizi, E. Y. C. Yu, J. Dalmieda, D. Saha, P. R. Selvaganapathy, P. Kruse, Langmuir 2021, 37, 12163.

[11]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, P. Bøggild, Sci. Rep. 2015, 5, 12305.

[12]

N. Li, Z. Chen, W. Ren, F. Li, H. M. Cheng, Proc. Natl Acad. Sci. USA 2012, 109, 17360.

[13]

F. Wu, J. T. Lee, A. Magasinski, H. Kim, G. Yushin, Part. Part. Syst. Charact. 2014, 31, 639.

[14]

T. Mueller, E. Malic, npj 2D Mater. Appl. 2018, 2, 29.

[15]

C. Liu, Y. Wang, J. Sun, A. Chen, Trans. Tianjin Univ. 2020, 26, 104.

[16]

J. Sui, X. Chen, Y. Li, W. Peng, F. Zhang, X. Fan, RSC Adv. 2021, 11, 16065.

[17]

K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, J. Mater. Chem. C Mater. 2017, 5, 11992.

[18]

L. M. Guiney, N. D. Mansukhani, A. E. Jakus, S. G. Wallace, R. N. Shah, M. C. Hersam, Nano Lett. 2018, 18, 3488.

[19]

Q. Hu, Z. Sun, L. Nie, S. Chen, J. Yu, W. Liu, Mater. Today Energy 2022, 27, 101052.

[20]

S. H. Amsterdam, T. LaMountain, T. K. Stanev, V. K. Sangwan, R. López-Arteaga, S. Padgaonkar, K. Watanabe, T. Taniguchi, E. A. Weiss, T. J. Marks, M. C. Hersam, N. P. Stern, J. Phys. Chem. Lett. 2021, 12, 26.

[21]

W. J. Hyun, L. E. Chaney, J. R. Downing, A. C. M. de Moraes, M. C. Hersam, Faraday Discuss. 2021, 227, 92.

[22]

N. Khossossi, D. Singh, W. Luo, R. Ahuja, Electrochim. Acta 2022, 421, 140491.

[23]

J. Li, L. M. Guiney, J. R. Downing, X. Wang, C. H. Chang, J. Jiang, Q. Liu, X. Liu, K. C. Mei, Y. P. Liao, T. Ma, H. Meng, M. C. Hersam, A. E. Nel, T. Xia, Small 2021, 17, e2101084.

[24]

Y. Gong, Z. Q. Xu, D. Li, J. Zhang, I. Aharonovich, Y. Zhang, ACS Energy Lett. 2021, 6, 985.

[25]

S. Angizi, M. Khalaj, S. A. A. Alem, A. Pakdel, M. Willander, A. Hatamie, A. Simchi, J. Electrochem. Soc. 2020, 167, 126513.

[26]

A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934.

[27]

S. Angizi, S. A. A. Alem, M. Hasanzadeh Azar, F. Shayeganfar, M. I. Manning, A. Hatamie, A. Pakdel, A. Simchi, Prog. Mater. Sci. 2022, 124, 100884.

[28]

S. Angizi, A. Hatamie, H. Ghanbari, A. Simchi, ACS Appl. Mater. Interfaces 2018, 10, 28819.

[29]

A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Mater. Today 2012, 15, 256.

[30]

A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, ACS Nano 2011, 5, 6507.

[31]

Y. Ding, P. He, S. Li, B. Chang, S. Zhang, Z. Wang, J. Chen, J. Yu, S. Wu, H. Zeng, L. Tao, ACS Nano 2021, 15, 14610.

[32]

Z. Lei, S. Xu, J. Wan, P. Wu, Nanoscale 2015, 7, 18902.

[33]

A. Sinitskii, K. J. Erickson, W. Lu, A. L. Gibb, C. Zhi, Y. Bando, D. Golberg, A. Zettl, J. M. Tour, ACS Nano 2014, 8, 9867.

[34]

C. Gautam, S. Chelliah, RSC Adv. 2021, 11, 31284.

[35]

C. Zhi, Y. Bando, C. Tang, D. Golberg, Mater. Sci. Eng. R. Rep. 2010, 70, 92.

[36]

W. Wang, Z. Li, E. Prestat, T. Hashimoto, J. Guan, K. S. Kim, C. T. Kingston, B. Simard, R. J. Young, ACS Appl. Nano Mater. 2020, 3, 364.

[37]

A. Molenda, I. Zasada, P. Maślanka, Physica E Low Dimens. Syst. Nanostruct. 2019, 107, 160.

[38]

S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y. K. Yap, in Boron nitride nanotubes in nanomedicine (Eds: G. Ciofani, V. Mattoli), William Andrew Publishing, Oxford 2016, pp. 1–15.

[39]

N. Kostoglou, K. Polychronopoulou, C. Rebholz, Vacuum 2015, 112, 42.

[40]

L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 2014, 8, 1457.

[41]

S. Roy, X. Zhang, A. B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M. M. Rahman, G. Babu, S. Susarla, S. K. Saju, M. K. Tran, L. M. Sassi, M. A. S. R. Saadi, J. Lai, O. Sahin, S. M. Sajadi, B. Dharmarajan, D. Salpekar, N. Chakingal, A. Baburaj, X. Shuai, A. Adumbumkulath, K. A. Miller, J. M. Gayle, A. Ajnsztajn, T. Prasankumar, V. V. J. Harikrishnan, V. Ojha, H. Kannan, A. Z. Khater, Z. Zhu, S. A. Iyengar, P. A. D. S. Autreto, E. F. Oliveira, G. Gao, A. G. Birdwell, M. R. Neupane, T. G. Ivanov, J. Taha-Tijerina, R. M. Yadav, S. Arepalli, R. Vajtai, P. M. Ajayan, Adv. Mater. 2021, 33, e2101589.

[42]

S. Angizi, S. A. A. Alem, A. Pakdel, Energies 2022, 15, 1162.

[43]

K.-S. Chen, I. Balla, N. S. Luu, M. C. Hersam, ACS Energy Lett. 2017, 2, 2026.

[44]

R. Rojaee, R. Shahbazian-Yassar, ACS Nano 2020, 14, 2628.

[45]

L. Peng, Y. Zhu, D. Chen, R. S. Ruoff, G. Yu, Adv. Energy Mater. 2016, 6, 1600025.

[46]

D. Han, J. Zhang, Z. Weng, D. Kong, Y. Tao, F. Ding, D. Ruan, Q. H. Yang, Mater. Today Energy 2019, 11, 30.

[47]

W. Gao, Y. Liu, C. Cao, Y. Zhang, Y. Xue, C. Tang, J. Colloid Interface Sci. 2022, 610, 527.

[48]

Z. Zheng, M. Cox, B. Li, J. Mater. Sci. 2018, 53, 66.

[49]

G. Li, X. Zhou, Y. Wei, C. Hao, Q. Lei, Mater. Res. Express 2019, 6, 115080.

[50]

M. G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, npj 2D Mater. Appl. 2021, 5, 56.

[51]

L. H. Li, Y. Chen, Langmuir 2010, 26, 5135.

[52]

E. Wagemann, Y. Wang, S. Das, S. K. Mitra, Phys. Chem. Chem. Phys. 2020, 22, 2488.

[53]

X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, Y. Bando, Nanoscale Res. Lett. 2012, 7, 662.

[54]

J. Li, X. Xiao, X. Xu, J. Lin, Y. Huang, Y. Xue, P. Jin, J. Zou, C. Tang, Sci. Rep. 2013, 3, 3208.

[55]

S. Angizi, M. A. Akbar, M. Darestani-Farahani, P. Kruse, ECS J. Solid State Sci. Technol. 2020, 9, 83004.

[56]

S. D. Nehate, A. K. Saikumar, A. Prakash, K. B. Sundaram, Mater. Today Adv. 2020, 8, 100106.

[57]

Q. Weng, D. G. Kvashnin, X. Wang, O. Cretu, Y. Yang, M. Zhou, C. Zhang, D. M. Tang, P. B. Sorokin, Y. Bando, D. Golberg, Adv. Mater. 2017, 29, 1700695.

[58]

A. Pakdel, Y. Bando, D. Golberg, ACS Nano 2014, 8, 10631.

[59]

A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, Nanotechnology 2012, 23, 215601.

[60]

S. Radhakrishnan, D. das, A. Samanta, C. A. de los Reyes, L. Deng, L. B. Alemany, T. K. Weldeghiorghis, V. N. Khabashesku, V. Kochat, Z. Jin, P. M. Sudeep, A. A. Martí, C. W. Chu, A. Roy, C. S. Tiwary, A. K. Singh, P. M. Ajayan, Sci. Adv. 2017, 3, e1700842.

[61]

Y. Xue, Q. Liu, G. He, K. Xu, L. Jiang, X. Hu, J. Hu, Nanoscale Res. Lett. 2013, 8, 49.

[62]

M. Abedi, M. Eslami, M. Ghadiri, S. Mohammadinia, Sci. Rep. 2020, 10, 19948.

[63]

Y. Li, N. Lv, C. Wang, J. Zhang, W. Fu, J. Yin, H. Li, W. Zhu, H. Li, J. Mol. Graph. Model. 2020, 101, 107715.

[64]

N. Hou, Y. Wu, H. Wu, ChemistrySelect 2019, 4, 1441.

[65]

F. Shayeganfar, R. Shahsavari, Langmuir 2016, 32, 13313.

[66]

M. Rafique, M. A. Unar, I. Ahmed, A. R. Chachar, Y. Shuai, J. Phys. Chem. Solids 2018, 118, 114.

[67]

R. Muhammad, Y. Shuai, H.-P. Tan, J. Mater. Chem. C 2017, 5, 8112.

[68]

M. Wang, F. Meng, D. Hou, Y. Han, J. Ren, C. Bai, B. Wang, T. Zhou, Solid State Commun. 2020, 307, 113803.

[69]

M. Ikram, I. Hussain, J. Hassan, A. Haider, M. Imran, M. Aqeel, A. Ul-Hamid, S. Ali, Ceram. Int. 2020, 46, 21073.

[70]

S. Angizi, F. Shayeganfar, M. H. Azar, A. Simchi, Ceram. Int. 2020, 46, 978.

[71]

M. Khalaj, S. Zarabi Golkhatmi, S. A. A. Alem, K. Baghchesaraee, M. Hasanzadeh Azar, S. Angizi, J. Compos. Sci. 2020, 4, 116.

[72]

Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 2016, 45, 3989.

[73]

C. Zhi, Y. Bando, T. Terao, C. C. Tang, H. Kuwahara, D. Golberg, Chem. Asian J. 2009, 4, 1536.

[74]

D. Lee, B. Lee, K. H. Park, H. J. Ryu, S. Jeon, S. H. Hong, Nano Lett. 2015, 15, 1238.

[75]

T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y. K. Gun’ko, J. Coleman, J. Am. Chem. Soc. 2012, 134, 18758.

[76]

D. Kim, S. Nakajima, T. Sawada, M. Iwasaki, S. Kawauchi, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Chem. Commun. 2015, 51, 7104.

[77]

Y. Liao, Z. Chen, J. W. Connell, C. C. Fay, C. Park, J. W. Kim, Y. Lin, Adv. Funct. Mater. 2014, 24, 4497.

[78]

K. ShiraláFernando, Chem. Commun. 2005, 29, 3670.

[79]

C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D. Golberg, Angew. Chem. Int. Ed. 2005, 44, 7932.

[80]

T. Sainsbury, A. O’Neill, M. K. Passarelli, M. Seraffon, D. Gohil, S. Gnaniah, S. J. Spencer, A. Rae, J. N. Coleman, Chem. Mater. 2014, 26, 7039.

[81]

X. Li, C. Lai, C. Xiao, X. Gao, Electrochim. Acta 2011, 56, 9152.

[82]

J. M. Jeong, B. G. Choi, S. C. Lee, K. G. Lee, S. J. Chang, Y. K. Han, Y. B. Lee, H. U. Lee, S. Kwon, G. Lee, C. S. Lee, Y. S. Huh, Adv. Mater. 2013, 25, 6250.

[83]

L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, J. Mater. Chem. A 2015, 3, 2726.

[84]

K. Lahtinen, M. Labmayr, V. Mäkelä, H. Jiang, J. Lahtinen, L. Yao, E. O. Fedorovskaya, S. Räsänen, S. Huotari, T. Kallio, Mater. Today Energy 2022, 27, 101040.

[85]

H. Mou, W. Xiao, C. Miao, R. Li, L. Yu, Front. Chem. 2020, 8, 141.

[86]

M. A. Kebede, Curr. Opin. Electrochem. 2020, 21, 182.

[87]

X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Nano Energy 2017, 31, 113.

[88]

Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7, 1700715.

[89]

F. Zhang, K. Németh, J. Bareño, F. Dogan, I. D. Bloom, L. L. Shaw, RSC Adv. 2016, 6, 27901.

[90]

H. Li, R. Y. Tay, S. H. Tsang, W. Liu, E. H. T. Teo, Electrochim. Acta 2015, 166, 197.

[91]

O. Ergen, AIP Adv. 2020, 10, 45040.

[92]

C. Han, Y. B. He, S. Wang, C. Wang, H. du, X. Qin, Z. Lin, B. Li, F. Kang, ACS Appl. Mater. Interfaces 2016, 8, 18788.

[93]

J. Bao, L. Zhu, H. Wang, S. Han, Y. Jin, G. Zhao, Y. Zhu, X. Guo, J. Hou, H. Yin, J. Tian, J. Phys. Chem. C 2018, 122, 23329.

[94]

T. Wang, S. Zhang, L. Yin, C. Li, C. Xia, Y. An, S. Wei, J. Phys. Condens. Matter 2020, 32, 355502.

[95]

G. Cherkashinin, R. Hausbrand, W. Jaegermann, J. Electrochem. Soc. 2019, 166, A5308.

[96]

D. D. de Vargas, M. H. Köhler, R. J. Baierle, Phys. Chem. Chem. Phys. 2021, 23, 17033.

[97]

E. I. Duden, U. Savacı, S. Turan, C. Sevik, I. Demiroglu, J. Phys. Condens. Matter 2023, 35, 85301.

[98]

K. Yuan, P. Hao, Y. Zhou, X. Hu, J. Zhang, S. Zhong, Phys. Chem. Chem. Phys. 2022, 24, 13713.

[99]

J. Pu, P. Xue, T. Li, J. Wu, K. Zhang, K. Zhu, S. Guo, G. Hong, H. Zhou, Y. Yao, J. Mater. Chem. A 2022, 10, 20265.

[100]

X. Liu, Z. Liu, H. Yang, P. Qing, W. Wei, X. Ji, Y. Chen, L. Chen, Adv. Mater. Interfaces 2022, 9, 2200011.

[101]

J. Shim, H. J. Kim, B. G. Kim, Y. S. Kim, D. G. Kim, J. C. Lee, Energy Environ. Sci. 2017, 10, 1911.

[102]

K. Li, Z. Hu, J. Ma, S. Chen, D. Mu, J. Zhang, Adv. Mater. 2019, 31, 1902399.

[103]

R. Li, H. Peng, Q. Wu, X. Zhou, J. He, H. Shen, M. Yang, C. Li, Angew. Chem. Int. Ed. 2020, 59, 12129.

[104]

B. Ye, L. Xu, W. Wu, Y. Ye, Z. Yang, Y. Qiu, Z. Gong, Y. Zhou, Q. Huang, Z. Shen, Z. Hong, Z. Meng, Z. Zeng, Z. Cheng, S. Ye, H. Hong, Q. Lan, F. Li, T. Guo, S. Xu, ACS Sustain. Chem. Eng. 2022, 10, 3166.

[105]

Z. Guo, H. Nie, Z. Yang, W. Hua, C. Ruan, D. Chan, M. Ge, X.’. Chen, S. Huang, Adv. Sci. 2018, 5, 1800026.

[106]

J. Liu, R. Lu, G. Xiao, C. Zhang, K. Zhao, Q. He, Y. Zhao, J. Colloid Interface Sci. 2022, 616, 886.

[107]

L. Gao, T. Sheng, H. Ren, T. X. Liu, M. Birkett, S. W. Joo, J. Huang, Appl. Surf. Sci. 2022, 597, 153687.

[108]

Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao, S. Zhang, C. Zhong, J. Zhu, J. Lu, H. Zhang, ACS Nano 2020, 14, 6673.

[109]

M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, W. He, Adv. Mater. Interfaces 2019, 6, 1801330.

[110]

A. C. de Moraes, W. J. Hyun, J.-W. T. Seo, J. R. Downing, J.-M. Lim, M. C. Hersam, Adv. Funct. Mater. 2019, 29, 1902245.

[111]

A. C. De Moraes, W. J. Hyun, N. S. Luu, J. M. Lim, K. Y. Park, M. C. Hersam, ACS Appl. Mater. Interfaces 2020, 12, 8107.

[112]

M. M. Rahman, S. Mateti, Q. Cai, I. Sultana, Y. Fan, X. Wang, C. Hou, Y. Chen, Energy Storage Mater. 2019, 19, 352.

[113]

C. J. Orendorff, T. N. Lambert, C. A. Chavez, M. Bencomo, K. R. Fenton, Adv. Energy Mater. 2013, 3, 314.

[114]

P. Yang, P. Zhang, C. Shi, L. Chen, J. Dai, J. Zhao, J. Membr. Sci. 2015, 474, 148.

[115]

F. Shi, A. Pei, D. T. Boyle, J. Xie, X. Yu, X. Zhang, Y. Cui, Proc. Natl Acad. Sci. USA 2018, 115, 8529.

[116]

M. Gao, H. Li, L. Xu, Q. Xue, X. Wang, Y. Bai, C. Wu, J. Energy Chem. 2021, 59, 666.

[117]

K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J. Electrochem. Soc. 2017, 164, A1731.

[118]

L. Xue, W. Chen, Y. Hu, T. Lei, C. Yang, M. Zhou, X. Zhang, A. Hu, Y. Li, X. Wang, J. Xiong, Nano Energy 2021, 79, 105481.

[119]

T. Ma, R. Wang, S. Jin, S. Zheng, L. Li, J. Shi, Y. Cai, J. Liang, Z. Tao, ACS Appl. Mater. Interfaces 2021, 13, 391.

[120]

W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. M. Chiang, Y. Cui, Nat. Commun. 2015, 6, 7436.

[121]

G. Chen, C. Niu, X. Liao, Y. Chen, W. Shang, J. du, Y. Chen, Solid State Ionics 2020, 349, 115309.

[122]

J. Xiao, Science 2019, 366, 426.

[123]

W. Zhang, H. L. Zhuang, L. Fan, L. Gao, Y. Lu, Sci. Adv. 2018, 4, eaar4410.

[124]

S. Xu, K.-H. Chen, N. P. Dasgupta, J. B. Siegel, A. G. Stefanopoulou, J. Electrochem. Soc. 2019, 166, A3456.

[125]

H. Kim, G. Jeong, Y. U. Kim, J. H. Kim, C. M. Park, H. J. Sohn, Chem. Soc. Rev. 2013, 42, 9011.

[126]

X.-B. Cheng, Q. Zhang, J. Mater. Chem. A 2015, 3, 7207.

[127]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.

[128]

S. S. Zhang, J. Power Sources 2007, 164, 351.

[129]

P. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419.

[130]

D. Wang, Z. Zhao, L. Yu, K. Zhang, H. Na, S. Ying, D. Xu, G. Zhang, J. Appl. Polym. Sci. 2014, 131, 40543.

[131]

J. Liu, D. Cao, H. Yao, D. Liu, X. Zhang, Q. Zhang, L. Chen, S. Wu, Y. Sun, D. He, J. Liu, ACS Appl. Energy Mater. 2022, 5, 8639.

[132]

L. Sheng, R. Xu, H. Zhang, Y. Bai, S. Song, G. Liu, T. Wang, X. Huang, J. He, J. Electroanal. Chem. 2020, 873, 114391.

[133]

R. Xu, X. Huang, X. Lin, J. Cao, J. Yang, C. Lei, J. Electroanal. Chem. 2017, 786, 77.

[134]

Z. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 2020, 13, 1856.

[135]

C. Ye, D. Chao, J. Shan, H. Li, K. Davey, S. Z. Qiao, Matter 2020, 2, 323.

[136]

Y. Fan, D. Liu, M. M. Rahman, T. Tao, W. Lei, S. Mateti, B. Yu, J. Wang, C. Yang, Y. Chen, ACS Appl. Energy Mater. 2019, 2, 2620.

[137]

Y. Chen, Q. Kang, P. Jiang, X. Huang, Nano Res. 2021, 14, 2424.

[138]

E. Cha, J. H. Yun, R. Ponraj, D. K. Kim, Mater.s Chem. Front. 2021, 5, 6294.

[139]

C. Sun, J. Sheng, Q. Zhang, R. Gao, Z. Han, C. Li, X. Xiao, L. Qiu, G. Zhou, Sci. China Mater. 2022, 65, 2169.

[140]

Y. Li, T. Gao, D. Ni, Y. Zhou, M. Yousaf, Z. Guo, J. Zhou, P. Zhou, Q. Wang, S. Guo, Adv. Mater. 2022, 34, 2107638.

[141]

K. Sun, P. Guo, X. Shang, Y. Fu, P. Cheng, Q. Liu, Q. Weng, D. Liu, D. He, J. Electroanal. Chem. 2019, 842, 34.

[142]

J.-N. Chazalviel, Phys. Rev. A 1990, 42, 7355.

[143]

C. Monroe, J. Newman, J. Electrochem. Soc. 2003, 150, A1377.

[144]

C. Monroe, J. Newman, J. Electrochem. Soc. 2005, 152, A396.

[145]

J. W. Fergus, J. Power Sources 2010, 195, 4554.

[146]

W. J. Hyun, C. M. Thomas, N. S. Luu, M. C. Hersam, Adv. Mater. 2021, 33, 2007864.

[147]

W. J. Hyun, C. M. Thomas, M. C. Hersam, Adv. Energy Mater. 2020, 10, 2002135.

[148]

H. T. Le, D. T. Ngo, R. S. Kalubarme, G. Cao, C. N. Park, C. J. Park, ACS Appl. Mater. Interfaces 2016, 8, 20710.

[149]

S. J. Kwon, B. M. Jung, T. Kim, J. Byun, J. Lee, S. B. Lee, U. H. Choi, Macromolecules 2018, 51, 10194.

[150]

H. Zhang, H. Lu, J. Chen, Y. Nuli, J. Wang, ACS Appl. Mater. Interfaces 2021, 13, 48622.

[151]

Y. L. Ni’mah, Z. H. Muhaiminah, S. Suprapto, Polymers 2021, 13, 4240.

[152]

L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 2016, 4, 10038.

[153]

D. Kim, X. Liu, B. Yu, S. Mateti, L. A. O’Dell, Q. Rong, Y. I. Chen, Adv. Funct. Mater. 2020, 30, 1910813.

[154]

C. M. Thomas, W. J. Hyun, H. C. Huang, D. Zeng, M. C. Hersam, ACS Energy Lett. 2022, 7, 1558.

[155]

H. Aydın, S. Ü. Çelik, A. Bozkurt, Solid State Ionics 2017, 309, 71.

[156]

W. J. Hyun, C. M. Thomas, L. E. Chaney, A. C. Mazarin de Moraes, M. C. Hersam, Nano Lett. 2022, 22, 5372.

[157]

M. Li, Y. Gao, D. Yu, Z. Hu, Z. Liu, X. Wang, Q. Weng, Y. Chen, Y. Zhang, S. Zhang, Energy Storage Mater. 2023, 59, 102753.

[158]

R. Liu, G. Zhang, Y. Li, J. Zhang, J. Appl. Polym. Sci. 2023, 140, e53337.

[159]

Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang, Y. Deng, C. Wang, Nano Res. 2020, 13, 2259.

[160]

J. Li, L. Yang, H. Zhang, X. Ji, Chem. Eng. J. 2022, 438, 135418.

[161]

W. J. Hyun, A. C. M. de Moraes, J. M. Lim, J. R. Downing, K. Y. Park, M. T. Z. Tan, M. C. Hersam, ACS Nano 2019, 13, 9664.

[162]

X. Yin, L. Wang, Y. Kim, N. Ding, J. Kong, D. Safanama, Y. Zheng, J. Xu, D. V. M. Repaka, K. Hippalgaonkar, S. W. Lee, S. Adams, G. W. Zheng, Adv. Sci. 2020, 7, 2001303.

[163]

M. T. F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A. L. M. Reddy, P. M. Ajayan, Adv. Energy Mater. 2016, 6, 1600218.

[164]

C. J. Orendorff, Electrochem. Soc. Interface 2012, 21, 61.

[165]

L. Wang, J. Li, G. Lu, W. Li, Q. Tao, C. Shi, H. Jin, G. Chen, S. Wang, Front. Mater. 2020, 7, 111.

[166]

Q. Tu, L. Barroso-Luque, T. Shi, G. Ceder, Cell Rep. Phys. Sci. 2020, 1, 100106.

[167]

B. Zhao, L. Ma, K. Wu, M. Cao, M. Xu, X. Zhang, W. Liu, J. Chen, Chin. Chem. Lett. 2021, 32, 125.

[168]

Y. Li, L. Zhang, Z. Sun, G. Gao, S. Lu, M. Zhu, Y. Zhang, Z. Jia, C. Xiao, H. Bu, K. Xi, S. Ding, J. Mater. Chem. A 2020, 8, 9579.

[169]

L. Zhu, Y. Wang, Y. Wu, W. Feng, Z. Liu, W. Tang, X. Wang, Y. Xia, Adv. Funct. Mater. 2022, 32, 2201136.

[170]

K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Sci. Adv. 2017, 3, e1601659.

[171]

S. Jiao, J. Zheng, Q. Li, X. Li, M. H. Engelhard, R. Cao, J. G. Zhang, W. Xu, Joule 2018, 2, 110.

[172]

Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.

[173]

Q. Cheng, A. Li, N. Li, S. Li, A. Zangiabadi, T. D. Li, W. Huang, A. C. Li, T. Jin, Q. Song, W. Xu, N. Ni, H. Zhai, M. Dontigny, K. Zaghib, X. Chuan, D. Su, K. Yan, Y. Yang, Joule 2019, 3, 1510.

[174]

Y. Zhang, J. Huang, M. Cao, G. du, Z. Liu, W. Li, Energies 2021, 14, 999.

[175]

O.-K. Park, P. S. Owuor, Y. M. Jaques, D. S. Galvao, N. H. Kim, J. H. Lee, C. S. Tiwary, P. M. Ajayan, Compos. Sci. Technol. 2020, 188, 107977.

[176]

T. Inada, K. Takada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, J. Power Sources 2003, 119, 948.

[177]

P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei, L. Wang, W. Liu, Q. Chen, W. Yang, Y. Cui, Y. Gong, Adv. Mater. 2021, 33, 2006247.

[178]

K. Yan, H. W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Nano Lett. 2014, 14, 6016.

[179]

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57.

[180]

J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y. Cui, Sci. Adv. 2017, 3, eaao3170.

[181]

D. Kim, S. Mateti, B. Yu, K. Tanwar, Q. Cai, H. Jiang, Y. Fan, L. A. O’Dell, Y. Chen, ACS Appl. Mater. Interfaces 2022, 14, 52993.

[182]

H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu, Y. Yang, X. He, Nano-Micro Lett. 2023, 15, 42.

[183]

T. Naren, R. Jiang, G. Kuang, L. Zhou, L. Chen, ChemSusChem 2024, 17, e202301228.

[184]

C. Wei, L. Tan, Y. Zhang, Z. Wang, B. Xi, S. Xiong, J. Feng, EnergyChem 2022, 4, 100089.

[185]

G. Park, H. Nakamura, Y. Lee, M. Yoshio, J. Power Sources 2009, 189, 602.

[186]

L. Li, H. Dai, C. Wang, Nano Select 2021, 2, 16.

[187]

J. Wu, X. Li, Z. Rao, X. Xu, Z. Cheng, Y. Liao, L. Yuan, X. Xie, Z. Li, Y. Huang, Nano Energy 2020, 72, 104725.

[188]

Y. Mussa, F. Ahmed, M. Arsalan, E. Alsharaeh, Sci. Rep. 2020, 10, 1882.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/