Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life

Juhyoung Kim , Woonghee Choi , Seong-Ju Hwang , Dong Wook Kim

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12776

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12776 DOI: 10.1002/eem2.12776
RESEARCH ARTICLE

Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life

Author information +
History +
PDF

Abstract

Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries. The high ion conductivity, mechanical characteristics, and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes. However, the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries. Particularly, the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode, comprising various materials. In this study, carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes. Several instruments, including electrochemical spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy, confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes. Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.

Keywords

composite cathode / electrochemical stability / ionic conductive polymer / solid-state battery / sulfide solid electrolyte

Cite this article

Download citation ▾
Juhyoung Kim, Woonghee Choi, Seong-Ju Hwang, Dong Wook Kim. Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life. Energy & Environmental Materials, 2024, 7(6): e12776 DOI:10.1002/eem2.12776

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Pelegov, J. Pontes, Batteries 2018, 4, 65.

[2]

H. Engel, P. Hertzke, G. Siccardo, Second-Life EV Batteries: The Newest Value Pool in Energy Storage, McKinsey and Company, Chicago, IL 2019.

[3]

H. Bajolle, M. Lagadic, N. Louvet, Energy Res. Soc. Sci. 2022, 93, 102850.

[4]

G. Zhao, X. Wang, M. Negnevitsky, H. Zhang, J. Power Sources 2021, 501, 230001.

[5]

S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, J. Electrochem. Soc. 2015, 162, A3084.

[6]

Q.-K. Zhang, X.-Q. Zhang, H. Yuan, J.-Q. Huang, Small Sci. 2021, 1, 2100058.

[7]

R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[8]

B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, J. Xiao, Energy Environ. Sci. 2018, 11, 1803.

[9]

A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[10]

P.-J. Lian, B.-S. Zhao, L.-Q. Zhang, N. Xu, M.-T. Wu, X.-P. Gao, J. Mater. Chem. A 2019, 7, 20540.

[11]

Z. Jiang, H. L. Peng, Y. Liu, Z. X. Li, Y. Zhong, X. L. Wang, X. H. Xia, C. D. Gu, J. P. Tu, Adv. Energy Mater. 2021, 11, 2101521.

[12]

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. A. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.

[13]

A. Gautam, M. Sadowski, M. Ghidiu, N. Minafra, A. Senyshyn, K. Albe, W. G. Zeier, Adv. Energy Mater. 2021, 11, 2003369.

[14]

R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574.

[15]

C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q. Han, Front. Energy Res. 2014, 2, 25.

[16]

K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J. Electrochem. Soc. 2017, 164, A1731.

[17]

R. P. Rao, S. Adams, Phys. Status Solidi A 2011, 208, 1804.

[18]

S. Wenzel, D. A. Weber, T. Leichtweiss, M. R. Busche, J. Sann, J. Janek, Solid State Ion. 2016, 286, 24.

[19]

Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030.

[20]

S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, Chem. Mater. 2016, 28, 2400.

[21]

M. T. McDowell, S. Xia, T. Zhu, Extreme Mech. Lett. 2016, 9, 480.

[22]

Y. Wang, J. Liu, T. Chen, W. Lin, J. Zheng, Phys. Chem. Chem. Phys. 2022, 24, 2167.

[23]

M. Nagao, A. Hayashi, M. Tatsumisago, T. Kanetsuku, T. Tsuda, S. Kuwabata, Phys. Chem. Chem. Phys. 2013, 15, 18600.

[24]

T. Yu, B. Ke, H. Li, S. Guo, H. Zhou, Mater. Chem. Front. 2021, 5, 4892.

[25]

Y. Nikodimos, C. J. Huang, B. W. Taklu, W. N. Su, B. J. Hwang, Energy Environ. Sci. 2022, 15, 991.

[26]

S.-K. Jung, H. Gwon, S.-S. Lee, H. Kim, J. C. Lee, J. G. Chung, S. Y. Park, Y. Aihara, D. Im, J. Mater. Chem. A 2019, 7, 22967.

[27]

D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, ACS Energy Lett. 2019, 4, 2418.

[28]

L. Peng, H. Ren, J. Zhang, S. Chen, C. Yu, X. Miao, Z. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, J. Xie, Energy Storage Mater. 2021, 43, 53.

[29]

Y.-J. Kim, R. Rajagopal, S. Kang, K.-S. Ryu, Chem. Eng. J. 2020, 386, 123975.

[30]

S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T. Y. Kim, S.-W. Baek, J.-M. Lee, S. Doo, N. Machida, J. Power Sources 2014, 248, 943.

[31]

W. S. K. Bong, A. Shiota, T. Miwa, Y. Morino, S. Kanada, K. Kawamoto, J. Power Sources 2023, 577, 233259.

[32]

Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, J. Mater. Chem. 2010, 20, 7606.

[33]

Y. Morino, S. Kanada, J. Power Sources 2021, 509, 230376.

[34]

S. Y. Lee, G. S. Park, C. Jung, D. S. Ko, S. Y. Park, H. G. Kim, S. H. Hong, Y. Zhu, M. Kim, Adv. Sci. (Weinh) 2019, 6, 1800843.

[35]

C. Heubner, U. Langklotz, C. Lämmel, M. Schneider, A. Michaelis, Electrochim. Acta 2020, 330, 135160.

[36]

P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 2018, 11, 860.

[37]

K. Lee, S. Kim, J. Park, S. H. Park, A. Coskun, D. S. Jung, W. Cho, J. W. Choi, J. Electrochem. Soc. 2017, 164, A2075.

[38]

T. Inada, K. Takada, A. Kajiyama, M. Kouguchi, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, Solid State Ion. 2003, 158, 275.

[39]

N. Riphaus, P. Strobl, B. Stiaszny, T. Zinkevich, M. Yavuz, J. Schnell, S. Indris, H. A. Gasteiger, S. J. Sedlmaier, J. Electrochem. Soc. 2018, 165, A3993.

[40]

S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang, W. Ma, L. Zhu, X. Zhang, J. Power Sources 2021, 485, 229325.

[41]

J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni, L.-Z. Fan, J. Energy Chem. 2021, 58, 17.

[42]

Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu, X. Zhang, X. Wang, Y. Shen, Y.-H. Lin, M. Li, L. Z. Fan, L. Li, C.-W. Nan, Energy Storage Mater. 2020, 25, 145.

[43]

C. Zou, L. Yang, K. Luo, L. Liu, X. Tao, L. Yi, X. Liu, Z. Luo, X. Wang, J. Electroanal. Chem. 2021, 900, 115739.

[44]

N. Riphaus, B. Stiaszny, H. Beyer, S. Indris, H. A. Gasteiger, S. J. Sedlmaier, J. Electrochem. Soc. 2019, 166, A975.

[45]

N. Meng, F. Lian, G. Cui, Small 2021, 17, e2005762.

[46]

S. Wenzel, S. J. Sedlmaier, C. Dietrich, W. G. Zeier, J. Janek, Solid State Ion. 2018, 318, 102.

[47]

E. A. Wu, C. S. Kompella, Z. Zhu, J. Z. Lee, S. C. Lee, I. H. Chu, H. Nguyen, S. P. Ong, A. Banerjee, Y. S. Meng, ACS Appl. Mater. Interfaces 2018, 10, 10076.

[48]

J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105.

[49]

S. Wang, M. Yan, Y. Li, C. Vinado, J. Yang, J. Power Sources 2018, 393, 75.

[50]

S. Narayanan, U. Ulissi, J. S. Gibson, Y. A. Chart, R. S. Weatherup, M. Pasta, Nat. Commun. 2022, 13, 7237.

[51]

T. K. Schwietert, V. A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis, N. J. J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E. M. Kelder, S. Ganapathy, M. Wagemaker, Nat. Mater. 2020, 19, 428.

[52]

K. N. Wood, K. X. Steirer, S. E. Hafner, C. Ban, S. Santhanagopalan, S. H. Lee, G. Teeter, Nat. Commun. 2018, 9, 2490.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/