Dry Electrode Processing for Free-Standing Supercapacitor Electrodes with Longer Life, Higher Volumetric Outputs, and Reduced Environmental Impact

Emmanuel Pameté , Jean G. A. Ruthes , Marius Hermesdorf , Anna Seltmann , Delvina J. Tarimo , Desirée Leistenschneider , Volker Presser

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12775

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12775 DOI: 10.1002/eem2.12775
RESEARCH ARTICLE

Dry Electrode Processing for Free-Standing Supercapacitor Electrodes with Longer Life, Higher Volumetric Outputs, and Reduced Environmental Impact

Author information +
History +
PDF

Abstract

Supercapacitors are efficient and versatile energy storage devices, offering remarkable power density, fast charge/discharge rates, and exceptional cycle life. As research continues to push the boundaries of their performance, electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors. Herein, we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors. Notably, our study explores the performance of these electrodes in three different types of electrolytes: organic, ionic liquids, and quasi-solid states. By examining the impact of dry electrode processing on various electrode and electrolyte systems, we show valuable insights into the versatility and efficacy of this technique. The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes, with a lifespan extension of +45% in organic, +192% in ionic liquids, and +84% in quasi-solid electrolytes. Moreover, the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs, enhancing energy storage capacities within compact form factors. Notably, dry electrode-prepared supercapacitors outperformed their wet electrode counterparts, exhibiting a higher energy density of 6.1 Wh cm-3 compared with 4.7 Wh cm-3 at a high power density of 195 W cm-3, marking a substantial 28% energy improvement in the quasi-solid electrolyte.

Keywords

dry electrodes processing / long-term stability / supercapacitors / sustainability

Cite this article

Download citation ▾
Emmanuel Pameté, Jean G. A. Ruthes, Marius Hermesdorf, Anna Seltmann, Delvina J. Tarimo, Desirée Leistenschneider, Volker Presser. Dry Electrode Processing for Free-Standing Supercapacitor Electrodes with Longer Life, Higher Volumetric Outputs, and Reduced Environmental Impact. Energy & Environmental Materials, 2025, 8(1): e12775 DOI:10.1002/eem2.12775

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Noori, M. F El-Kady, M. S. Rahmanifar, R. B. Kaner, M. F. Mousavi, Chem. Soc. Rev. 2019, 48, 1272.

[2]

F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 2014, 26, 2219.

[3]

S. Pohlmann, Nat. Commun. 2022, 13, 1538.

[4]

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna, C. P. Grey, B. Dunn, P. Simon, Nat. Energy 2016, 1, 16070.

[5]

H. Li, C. Qi, Y. Tao, H. Liu, D.-W. Wang, F. Li, Q.-H. Yang, H.-M. Cheng, ACS Appl. Mater. Interfaces 2019, 9, 1900079.

[6]

E. D. Walsh, X. Han, S. D. Lacey, J.-W. Kim, J. W. Connell, L. Hu, Y. Lin, ACS Appl. Mater. Interfaces 2016, 8, 29478.

[7]

H. Von Blottnitz, M. A. Curran, J. Clean. Prod. 2007, 15, 607.

[8]

X. B. Han, L. G. Lu, Y. J. Zheng, X. N. Feng, Z. Li, J. Q. Li, M. G. Ouyang, Etransportation 2019, 1, 100005.

[9]

Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang, Q. Zhang, Matter 2022, 5, 876.

[10]

W. Yao, M. Chouchane, W. Li, S. Bai, Z. Liu, L. Li, A. X. Chen, B. Sayahpour, R. Shimizu, G. Raghavendran, M. A. Schroeder, Y.-T. Chen, D. H. S. Tan, B. Sreenarayanan, C. K. Waters, A. Sichler, B. Gould, D. J. Kountz, D. J. Lipomi, M. Zhang, Y. S. Meng, Energy Environ. Sci. 2023, 16, 1620.

[11]

Y. Liu, R. Zhang, J. Wang, Y. Wang, IScience 2021, 24, 102332.

[12]

C. Yuan, Y. Deng, T. Li, F. Yang, CIRP Ann. 2017, 66, 53.

[13]

K.-H. Pettinger, W. Dong, J. Electrochem. Soc. 2016, 164, A6274.

[14]

D. L. Wood III, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.

[15]

M. Al-Shroofy, Q. Zhang, J. Xu, T. Chen, A. P. Kaur, Y.-T. Cheng, J. Power Sources 2017, 352, 187.

[16]

D. L. Wood, J. D. Quass, J. Li, S. Ahmed, D. Ventola, C. Daniel, Dry. Technol. 2018, 36, 234.

[17]

M. Zackrisson, L. Avellán, J. Orlenius, J. Clean. Prod. 2010, 18, 1519.

[18]

M. Erakca, M. Baumann, W. Bauer, L. de Biasi, J. Hofmann, B. Bold, M. Weil, IScience 2021, 24, 102437.

[19]

B. Ludwig, Z. Zheng, W. Shou, Y. Wang, H. Pan, Sci. Rep. 2016, 6, 23150.

[20]

F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T. Shiratsuchi, T. Tsujimura, Y. Aihara, S. Kaskel, Energy Stor. Mater. 2019, 21, 390.

[21]

L. Zhong, X. Xi, P. Mitchell, B. Zou, United States of America Patent US7352558B2. 2004.

[22]

P. Mitchell, X. Xi, L. Zhong, United States of America Patent US7883553B2. 2004.

[23]

P. Mitchell, F. Bogenstahl, R. Wolters, C. Lansing, J. Gottszhky, K. Wolters, T. Hackfort, United States of America Patent US20220072612A1. 2020.

[24]

D. Leistenschneider, L. H. Heß, A. Balducci, L. Borchardt, Sustain. Energy Fuel 2020, 4, 2438.

[25]

E. Pameté, B. Gorska, P. Ratajczak, F. Béguin, J. Mater. Chem. A 2020, 8, 13548.

[26]

D. Weingarth, M. Zeiger, N. Jäckel, M. Aslan, G. Feng, V. Presser, Adv. Energy Mater. 2014, 4, 1400316.

[27]

O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Carbon 2005, 43, 1303.

[28]

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760.

[29]

E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Carbon 2006, 44, 2498.

[30]

J. W. Gittins, Y. Chen, S. Arnold, V. Augustyn, A. Balducci, T. Brousse, E. Frackowiak, P. Gómez-Romero, A. Kanwade, L. Köps, P. K. Jha, D. Lyu, M. Meo, D. Pandey, L. Pang, V. Presser, M. Rapisarda, D. Rueda-García, S. Saeed, P. M. Shirage, A. Ślesiński, F. Soavi, J. Thomas, M.-M. Titirici, H. Wang, Z. Xu, A. Yu, M. Zhang, A. C. Forse, J. Power Sources 2023, 585, 233637.

[31]

A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, J. Power Sources 2007, 165, 922.

[32]

M. D. Stoller, R. S. Ruoff, Energy Environ. Sci. 2010, 3, 1294.

[33]

J. K. Ewert, D. Weingarth, C. Denner, M. Friedrich, M. Zeiger, A. Schreiber, N. Jäckel, V. Presser, R. Kempe, J. Mater. Chem. A 2015, 3, 18906.

[34]

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, Pure Appl. Chem. 2015, 87, 1051.

[35]

N. Jäckel, M. Rodner, A. Schreiber, J. Jeongwook, M. Zeiger, M. Aslan, D. Weingarth, V. Presser, J. Power Sources 2016, 326, 660.

[36]

N. Jäckel, D. Weingarth, A. Schreiber, B. Krüner, M. Zeiger, A. Tolosa, M. Aslan, V. Presser, Electrochim. Acta 2016, 191, 284.

[37]

N. Jäckel, D. Weingarth, M. Zeiger, M. Aslan, I. Grobelsek, V. Presser, J. Power Sources 2014, 272, 1122.

[38]

S. Sopčić, D. Antonić, Z. Mandić, J. Solid State Electrochem. 2022, 26, 591.

[39]

F. Wang, J. Lee, L. Chen, G. Zhang, S. He, J. Han, J. Ahn, J. Y. Cheong, S. Jiang, I.-D. Kim, ACS Nano 2023, 17, 8866.

[40]

Y. Gogotsi, P. Simon, Science 2011, 334, 917.

[41]

J. Busom, A. Schreiber, A. Tolosa, N. Jäckel, I. Grobelsek, N. J. Peter, V. Presser, J. Power Sources 2016, 329, 432.

[42]

E. Pamete, B. Gorska, F. Béguin, ChemSusChem 2021, 14, 1196.

[43]

B. Asbani, C. Douard, T. Brousse, J. Le Bideau, Energy Storage Mater. 2019, 21, 439.

[44]

M. Brachet, T. Brousse, J. Le Bideau, ECS Electrochem. Lett. 2014, 3, A112.

[45]

D. Kim, P. K. Kannan, C.-H. Chung, ChemistrySelect 2018, 3, 2190.

[46]

R. Singh, B. Bhattacharya, M. Gupta, Z. H. Khan, S. K. Tomar, V. Singh, P. K. Singh, Int. J. Hydrog. Energy 2017, 42, 14602.

[47]

F. He, B. Luo, S. Yuan, B. Liang, C. Choong, S. O. Pehkonen, RSC Adv. 2014, 4, 105.

[48]

T. Cai, K. Neoh, E. Kang, S. Teo, Langmuir 2011, 27, 2936.

[49]

N. Kotov, A. Sturcova, A. Zhigunov, V. Raus, J. Dybal, Cryst. Growth Des. 2016, 16, 1958.

[50]

J. Ren, J. Li, L. Lv, J. Wang, Environ. Sci. Pollut. Res. 2021, 28, 12909.

[51]

Y.-Z. Zheng, Y. Zhou, G. Deng, R. Guo, D.-F. Chen, Spectrochim. Acta Part A 2020, 226, 117641.

[52]

T. Yamada, M. Mizuno, ACS Omega 2021, 6, 1709.

[53]

M. Babucci, V. Balci, A. Akçay, A. Uzun, J. Phys. Chem. C 2016, 120, 20089.

[54]

X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 2017, 7, 15382.

[55]

X. Chen, L. Liang, W. Hu, H. Liao, Y. Zhang, J. Power Sources 2022, 542, 231766.

[56]

J. Liu, B. Ludwig, Y. Liu, H. Pan, Y. Wang, ACS Appl. Mater. Interfaces 2019, 11, 25081.

[57]

A. Burke, M. Miller, Electrochim. Acta 2010, 55, 7538.

[58]

E. Pameté, L. Köps, F. A. Kreth, S. Pohlmann, A. Varzi, T. Brousse, A. Balducci, V. Presser, Adv. Energy Mater. 2023, 13, 2301008.

[59]

A. Naumkin, A. Kraut-Vass, S. Gaarenstroom, C. Powell, NIST Standard Reference Database 20, Version 4.1. 2012.

[60]

D. Leistenschneider, K. Zürbes, C. Schneidermann, S. Grätz, S. Oswald, K. Wegner, B. Klemmed, L. Giebeler, A. Eychmüller, L. Borchardt, C 2018, 4, 14.

[61]

P. Przygocki, P. Ratajczak, F. Beguin, Angew. Chem. Int. Ed. 2019, 58, 17969.

[62]

S. Yuan, X. Huang, H. Wang, L. Xie, J. Cheng, Q. Kong, G. Sun, C.-M. Chen, J. Energy Chem. 2020, 51, 396.

[63]

T. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, ACS Nano 2013, 7, 6899.

[64]

H. Wang, Z. Li, J. K. Tak, C. M. Holt, X. Tan, Z. Xu, B. S. Amirkhiz, D. Harfield, A. Anyia, T. Stephenson, Carbon 2013, 57, 317.

[65]

D. Liu, Z. Jia, D. Wang, Carbon 2016, 100, 664.

[66]

K. Zhang, M. Liu, T. Zhang, X. Min, Z. Wang, L. Chai, Y. Shi, J. Mater. Chem. A 2019, 7, 26838.

[67]

Z. Tai, X. Yan, J. Lang, Q. Xue, J. Power Sources 2012, 199, 373.

[68]

Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G. M. Haarberg, Int. J. Electrochem. Sci. 2016, 11, 8270.

[69]

A. Daraghmeh, S. Hussain, L. Servera, E. Xuriguera, A. Cornet, A. Cirera, Electrochim. Acta 2017, 245, 531.

[70]

C. Portet, P. Taberna, P. Simon, E. Flahaut, J. Power Sources 2005, 139, 371.

[71]

B. Song, F. Wu, Y. Zhu, Z. Hou, K.-S. Moon, C.-P. Wong, Electrochim. Acta 2018, 267, 213.

[72]

E. Pameté, F. Beguin, Electrochim. Acta 2021, 389, 138687.

[73]

P. Ratajczak, K. Jurewicz, F. Beguin, J. Appl. Electrochem. 2014, 44, 475.

[74]

A. Bello, F. Barzegar, M. Madito, D. Y. Momodu, A. A. Khaleed, T. Masikhwa, J. K. Dangbegnon, N. Manyala, Electrochim. Acta 2016, 213, 107.

[75]

A. Bello, F. Barzegar, M. J. Madito, D. Y. Momodu, A. A. Khaleed, O. Olaniyan, T. M. Masikhwa, J. K. Dangbegnon, N. Manyala, ECS Trans. 2017.

[76]

Q. Abbas, F. Béguin, ChemSusChem 2018, 11, 975.

[77]

A. Brandt, J. Pires, M. Anouti, A. Balducci, Electrochim. Acta 2013, 108, 226.

[78]

V. L. Martins, A. J. R. Rennie, N. Sanchez-Ramirez, R. M. Torresi, P. J. Hall, ChemElectroChem 2018, 5, 598.

[79]

B. Krüner, J. Lee, N. Jäckel, A. Tolosa, V. Presser, ACS Appl. Mater. Interfaces 2016, 8, 9104.

[80]

R. A. Sheldon, M. L. Bode, S. G. Akakios, Curr. Opin. Green Sustain. Chem. 2022, 33, 100569.

[81]

A. Seltmann, T. Verkholyak, D. Golowicz, E. Pameté, A. Kuzmak, V. Presser, S. Kondrat, J. Mol. Liq. 2023, 391, 123369.

[82]

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York 2001.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/