Tuning MXenes Towards Their Use in Photocatalytic Water Splitting

Diego Ontiveros , Sergi Vela , Francesc Viñes , Carmen Sousa

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12774

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12774 DOI: 10.1002/eem2.12774
RESEARCH ARTICLE

Tuning MXenes Towards Their Use in Photocatalytic Water Splitting

Author information +
History +
PDF

Abstract

Finding appropriate photocatalysts for solar-driven water (H2O) splitting to generate hydrogen (H2) fuel is a challenging task, particularly when guided by conventional trial-and-error experimental methods. Here, density functional theory (DFT) is used to explore the MXenes photocatalytic properties, an emerging family of two-dimensional (2D) transition metal carbides and nitrides with chemical formula Mn+1XnTx, known to be semiconductors when having Tx terminations. More than 4,000 MXene structures have been screened, considering different compositional (M, X, Tx, and n) and structural (stacking and termination position) factors, to find suitable MXenes with a bandgap in the visible region and band edges that align with the water-splitting half-reaction potentials. Results from bandgap analysis show how, in general, MXenes with n = 1 and transition metals from group III present the most cases with bandgap and promising sizes, with C-MXenes being superior to N-MXenes. From band alignment calculations of candidate systems with a bandgap larger than 1.23 eV, the minimum required for a water-splitting process, Sc2CT2, Y2CT2 (Tx = Cl, Br, S, and Se) and Y2CI2 are highlighted as adequate photocatalysts.

Keywords

Density Functional Theory / MXenes / Photocatalysis / Water Splitting

Cite this article

Download citation ▾
Diego Ontiveros, Sergi Vela, Francesc Viñes, Carmen Sousa. Tuning MXenes Towards Their Use in Photocatalytic Water Splitting. Energy & Environmental Materials, 2024, 7(6): e12774 DOI:10.1002/eem2.12774

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhu, L. Hu, P. Zhao, L. Yoon, S. Lee, K. Y. Wong, Chem. Rev. 2020, 120, 851.

[2]

B. Akarsu, M. Serdar Genç, Fuel 2022, 324, 124465.

[3]

G. Squadrito, G. Maggio, A. Nicita, Renew. Energy 2023, 216, 119041.

[4]

R. M. Navarro Yerga, M. C. Alvarez Galván, F. del Valle, J. A. Villoria de la Mano, J. L. G. Fierro, ChemSusChem 2009, 2, 471.

[5]

Q. Weng, G. Li, X. Feng, K. Nielsch, D. Golberg, O. G. Schmidt, Adv. Mater. 2018, 30, 1801600.

[6]

P. Kumbhakar, C. Chowde Gowda, C. S. Tiwary, Front. Mater. 2021, 8, 721514.

[7]

X. Zhang, L. Hou, A. Ciesielski, P. Samorì, Adv. Energy Mater. 2016, 6, 1600671.

[8]

M. Schleicher, M. Fyta, ACS Appl. Electron. Mater. 2020, 2, 74.

[9]

C. He, C. Xu, W. Zhang, ACS Appl. Mater. Interfaces 2023, 15, 57015.

[10]

W. Zhang, J. T. Hou, M. Bai, C. He, J. R. Wen, Appl. Surf. Sci. 2023, 634, 157648.

[11]

G. Zhao, A. Wang, W. He, Y. Xing, X. Xu, Adv. Mater. Interfaces 2019, 6, 1900062.

[12]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[13]

Y. Gogotsi, B. Anasori, ACS Nano 2019, 13, 8491.

[14]

K. R. G. Lim, M. Shekhirev, B. C. Wyatt, B. Anasori, Y. Gogotsi, Z. W. Seh, Nat. Synth. 2022, 1, 601.

[15]

M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012, 6, 1322.

[16]

M. A. Hope, A. C. Forse, K. J. Griffith, M. R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C. P. Grey, Phys. Chem. Chem. Phys. 2016, 18, 5099.

[17]

V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, D. Talapin, Science 2020, 369, 979.

[18]

V. Natu, M. W. Barsoum, J. Phys. Chem. C 2023, 127, 20197.

[19]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[20]

K. Chaturvedi, V. Hada, S. Paul, B. Sarma, D. Malvi, M. Dhangar, H. Bajpai, A. Singhwane, A. K. Srivastava, S. Verma, Top. Curr. Chem. 2023, 381, 11.

[21]

R. Morales-Salvador, J. D. Gouveia, Á. Morales-García, F. Viñes, J. R. B. Gomes, F. Illas, ACS Catal. 2021, 11, 11248.

[22]

I. Persson, J. Halim, H. Lind, T. W. Hansen, J. B. Wagner, L. Å. Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P. O. Å. Persson, Adv. Mater. 2018, 31, 1805472.

[23]

Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, A. Vojvodic, ACS Energy Lett. 2016, 1, 589.

[24]

A. D. Handoko, K. H. Khoo, T. L. Tan, H. Jin, Z. W. Seh, J. Mater. Chem. A 2018, 6, 21885.

[25]

M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.

[26]

M. Karimipour, A. Paingott Parambil, K. Tabah Tanko, T. Zhang, F. Gao, M. Lira-Cantu, Adv. Energy Mater. 2023, 13, 2301959.

[27]

M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, M. W. Barsoum, J. Am. Chem. Soc. 2013, 135, 15966.

[28]

L. Chen, X. Dai, W. Feng, Y. Chen, Acc. Mater. Res. 2022, 3, 785.

[29]

Q. Zhong, Y. Li, G. Zhang, Chem. Eng. J. 2021, 409, 128099.

[30]

H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, Ceram. Int. 2018, 44, 19958.

[31]

Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Appl. Mater. Today 2018, 13, 217.

[32]

X. Li, J. Liu, G. Jiang, X. Lin, J. Wang, Z. Li, J. Colloid Interface Sci. 2023, 643, 174.

[33]

X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, J. Mater. Chem. A 2017, 5, 12899.

[34]

Z. Guo, J. Zhou, L. Zhu, Z. Sun, J. Mater. Chem. A 2016, 4, 11446.

[35]

D. Ontiveros, F. Viñes, C. Sousa, J. Mater. Chem. A 2023, 11, 13754.

[36]

I. Ibrahim, S. Abdel-Azeim, A. El-Nahas, O. Kühn, C. Chung, A. El-Zatahry, M. Shibl, J. Phys. Chem. C 2022, 126, 14886.

[37]

Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dall’Agnese, G. Cheng, X. Wang, J. Mater. Chem. A 2018, 6, 9124.

[38]

J. D. Gouveia, F. Viñes, F. Illas, J. R. B. Gomes, Phys. Rev. Mater. 2020, 4, 54003.

[39]

A. Jurado, Á. Morales-García, F. Viñes, F. Illas, J. Phys. Chem. C 2021, 125, 26808.

[40]

V. Wang, G. Tang, Y. Liu, R. Wang, H. Mizuseki, Y. Kawazoe, J. Nara, W. Geng, J. Phys. Chem. Lett. 2022, 13, 11581.

[41]

S. Guha, A. Kabiraj, S. Mahapatra, NPJ Comput. Mater. 2022, 8, 202.

[42]

J. Yan, D. Cao, M. Li, Q. Luo, X. Chen, L. Su, H. Shu, Small 2023, 19, 2303675.

[43]

N. Shah, X. Wang, J. Tian, Mater. Chem. Front. 2023, 7, 4181.

[44]

J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Chem 2019, 5, 18.

[45]

Á. Morales-García, F. Viñes, C. Sousa, F. Illas, J. Phys. Chem. Lett. 2023, 14, 3712.

[46]

F. Viñes, M. Bernechea, G. Konstantatos, F. Illas, Phys. Rev. B 2016, 94, 235203.

[47]

A. Iglesias-Juez, F. Viñes, O. Lamiel-Garcia, M. Fernández-García, F. Illas, J. Mater. Chem. 2015, 3, 8782.

[48]

A. Migani, L. Blancafort, J. Am. Chem. Soc. 2016, 138, 16165.

[49]

A. Migani, L. Blancafort, J. Am. Chem. Soc. 2017, 139, 11845.

[50]

A. Fujishima, K. Honda, Nature 1972, 238, 37.

[51]

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Adv. Funct. Mater. 2009, 19, 1849.

[52]

Z. Guo, F. Ambrosio, A. Pasquarello, ACS Catal. 2010, 10, 13186.

[53]

M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater. 2013, 23, 2185.

[54]

X. Hai, J. Tahir-Kheli, W. A. Goddard, J. Phys. Chem. Lett. 2011, 2, 212.

[55]

A. Champagne, J. C. Charlier, J. Phys. Mater. 2020, 3, 32006.

[56]

M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, J. Mater. Chem. C 2017, 5, 2488.

[57]

S. Ma, X. Fan, Y. An, D. Yang, Z. Luo, Y. Hu, N. Guo, J. Mater. Sci. 2019, 54, 11378.

[58]

T. Hu, Z. Li, M. Hu, J. Wang, Q. Hu, Q. Li, X. Wang, J. Phys. Chem. C 2017, 121, 19254.

[59]

S. Trasatti, Pure Appl. Chem. 1986, 58, 955.

[60]

M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, S. Yunoki, Phys. Rev. B 2015, 92, 75411.

[61]

L. Zhou, Y. Zhang, Z. Zhuo, A. J. Neukirch, S. Tretiak, J. Phys. Chem. Lett. 2018, 9, 6915.

[62]

A. Mostafaei, M. Abbasnejad, J. Alloys Compd. 2021, 857, 157982.

[63]

S. Y. Zhang, N. P. Shi, C. K. Wang, G. P. Zhang, Phys. Chem. Chem. Phys. 2024, 26, 412.

[64]

Q. Chen, D. Zhang, J. Pan, W. Fan, Optik 2020, 219, 165046.

[65]

R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Acta Mater. 2017, 125, 476.

[66]

Y. Li, Y. Qin, K. Chen, L. Chen, X. Zhang, H. Ding, M. Li, Y. Zhang, S. Du, Z. Chai, Q. Huang, J. Inorg. Mater. 2021, 36, 773.

[67]

J. Lu, A. Thore, R. Meshkian, Q. Tao, L. Hultman, J. Rosen, Cryst. Growth Des. 2017, 17, 5704.

[68]

Y. Jiang, Y. Zhang, Q. Huang, L. Hao, S. Du, J. Mater. Res. Technol. 2020, 9, 14979.

[69]

K. Gaál-Nagy, Phys. Rev. B 2008, 77, 24309.

[70]

J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 2014, 16, 20382.

[71]

W. Chen, A. Pasquarello, Phys. Rev. B 2012, 86, 35134.

[72]

Y. Wu, C. He, W. Zhang, J. Am. Chem. Soc. 2022, 144, 9344.

[73]

N. Zhang, Y. Hong, S. Yazdanparast, M. A. Zaeem, 2D Mater. 2018, 5, 45004.

[74]

B. Akgenc, Solid State Commun. 2019, 303, 113739.

[75]

P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, 864.

[76]

W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133.

[77]

G. Kresse, J. Hafner, Phys. Rev. B 1994, 47, 558.

[78]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[79]

J. P. Perdew, W. Yue, Phys. Rev. B 1986, 33, 8800.

[80]

C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[81]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[82]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[83]

C. Ougherb, T. Ouahrani, M. Badawi, Á. Morales-García, Phys. Chem. Chem. Phys. 2022, 24, 7243.

[84]

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[85]

M. Hybersten, S. Louie, Phys. Rev. B 1986, 34, 5390.

[86]

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 2009, 180, 2175.

[87]

F. Viñes, F. Illas, J. Comput. Chem. 2017, 38, 523.

[88]

A. Togo, A. Tanaka, Scr. Mater. 2015.

[89]

X. Gonze, C. Lee, Phys. Rev. B 1997, 55, 10355.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/