Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries

Zhenliang Duan , Pengbo Zhai , Ning Zhao , Xiangxin Guo

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12770

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12770 DOI: 10.1002/eem2.12770
RESEARCH ARTICLE

Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries

Author information +
History +
PDF

Abstract

High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries. However, the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance. Herein, the thin layer of two-dimensional (2D) graphitic carbon-nitride (g-C3N4) is uniformly coated on the LiNi0.8Co0.1Mn0.1O2 (denoted as NCM811@CN) using a facile chemical vaporization-assisted synthesis method. As an ideal protective layer, the g-C3N4 layer effectively avoids direct contact between the NCM811 cathode and the electrolyte, preventing harmful side reactions and inhibiting secondary crystal cracking. Moreover, the unique nanopore structure and abundant nitrogen vacancy edges in g-C3N4 facilitate the adsorption and diffusion of lithium ions, which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode. As a result, the NCM811@CN-3wt% cathode exhibits 161.3 mAh g−1 and capacity retention of 84.6% at 0.5 C and 55 °C after 400 cycles and 95.7 mAh g−1 at 10 C, which is greatly superior to the uncoated NCM811 (i.e. 129.3 mAh g−1 and capacity retention of 67.4% at 0.5 C and 55 °C after 220 cycles and 28.8 mAh g−1 at 10 C). The improved cycle performance of the NCM811@CN-3wt% cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes, which show 163.8 mAh g−1 and the capacity retention of 88.1% at 0.1 C and 30 °C after 200 cycles and 95.3 mAh g−1 at 1 C.

Keywords

cathode materials / g-CC 3N 4 coating / LiNi 0.8Co 0.1Mn 0.1O 2 / lithium batteries / PVDF:LLZTO electrolyte membranes

Cite this article

Download citation ▾
Zhenliang Duan, Pengbo Zhai, Ning Zhao, Xiangxin Guo. Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries. Energy & Environmental Materials, 2024, 7(6): e12770 DOI:10.1002/eem2.12770

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Lu, Z. Chen, Z. Ma, F. Pan, L. A. Curtiss, K. Amine, Nat. Nanotechnol. 2016, 11, 12.

[2]

W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 15.

[3]

P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J.-G. Zhang, Nat. Energy 2018, 3, 7.

[4]

D.-J. Lee, B. Scrosati, Y.-K. Sun, J. Power Sources 2011, 196, 18.

[5]

Y.-K. Sun, D.-H. Kim, C. S. Yoon, S.-T. Myung, J. Prakash, K. Amine, Adv. Funct. Mater. 2010, 20, 3.

[6]

J. Zhang, Z. Li, R. Gao, Z. Hu, X. Liu, J. Phys. Chem. C 2015, 119, 35.

[7]

H. Lee, M. G. Kim, J. Cho, Electrochem. Commun. 2007, 9(1), 1.

[8]

D. Liu, Z. He, X. Liu, Mater. Lett. 2007, 61, 25.

[9]

J. Y. Shi, C.-W. Yi, K. Kim, J. Power Sources 2010, 195, 19.

[10]

Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang, X. Yu, H. Li, ACS Appl. Mater. Interfaces 2020, 12, 2.

[11]

J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li, F. Zhou, J. Power Sources 2014, 266, 433.

[12]

D. Uzun, M. Doğrusöz, M. Mazman, E. Biçer, E. Avci, T. Şener, T. C. Kaypmaz, R. Demir-Cakan, Solid State Ionics 2013, 249, 171.

[13]

M. Dong, Z. Wang, H. Li, H. Guo, X. Li, K. Shih, J. Wang, ACS Sustain. Chem. Eng. 2017, 5, 11.

[14]

Y. Qiao, R. Hao, X. Shi, Y. Li, Y. Wang, Y. Zhang, C. Tang, G. Li, G. Wang, J. Liu, ACS Appl. Energy Mater. 2022, 5, 4.

[15]

W. Li, N. Zhao, Z. Bi, X. Guo, J. Inorg. Mater. 2022, 37, 2.

[16]

D. Su, J. Cui, P. Zhai, X. Guo, J. Inorg. Mater. 2022, 37, 7.

[17]

Y. Wang, Q. Zhang, Z.-C. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J.-N. Zhang, Z. Jiang, Adv. Energy Mater. 2020, 10, 28.

[18]

G.-R. Hu, X.-R. Deng, Z.-D. Peng, K. Du, Electrochim. Acta 2008, 53, 5.

[19]

J.-G. Lee, T.-G. Kim, B. Park, Mater. Res. Bull. 2007, 42, 7.

[20]

X. Liu, J. Liu, T. Huang, A. Yu, Electrochim. Acta 2013, 109, 52.

[21]

S.-T. Myung, K.-S. Lee, C. S. Yoon, Y.-K. Sun, K. Amine, H. Yashiro, J. Phys. Chem. C 2010, 114, 10.

[22]

S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. Y. Liu, X. L. Wang, C. D. Gu, J. Power Sources 2013, 225, 338.

[23]

Y. Huang, G. Zaang, W. Zhu, Y. Liao, W. Li, Energy Storage Sci. Technol. 2023, 12, 8.

[24]

S. M. A. Ali, K.-W. Nam, M. T. Khan, M. Ali, B. Hussain, M. M. Khan, G. Mehmood, J. Alloys Compd. 2022, 907, 164392.

[25]

X. Xie, B. Zhang, G. Hu, K. Du, J. Wu, Y. Wang, Z. Gan, J. Fan, H. Su, Y. Cao, J. Alloys Compd. 2021, 853, 157106.

[26]

Y. Zhuang, W. Shen, J. Yan, L. Wang, C. Zhou, P. Lei, M. Zhong, J. Zhang, S. Guo, ACS Appl. Energy Mater. 2022, 5, 4.

[27]

L. Wang, Q. Su, W. Shi, C. Wang, H. Li, Y. Wang, G. Du, M. Zhang, W. Zhao, S. Ding, Electrochim. Acta 2022, 435, 141411.

[28]

C. Lei, J. Li, Z. Tan, Y. Li, P. He, Y. Liu, Y. Li, F. Wu, Y. Cheng, Z. He, ACS Appl. Mater. Interfaces 2023, 15, 26.

[29]

X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song, Adv. Funct. Mater. 2015, 25, 44.

[30]

Y. Yang, J. Li, D. Chen, J. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 40.

[31]

G. Wang, Z. Wen, Y.-E. Yang, J. Yin, W. Kong, S. Li, J. Sun, S. Ji, J. Mater. Chem. A 2018, 6, 17.

[32]

Z.-X. He, H.-T. Yu, F. He, Y. Xie, L. Yuan, T.-F. Yi, J. Ind. Eng. Chem. 2023, 119, 286.

[33]

X. Wang, Q. Weng, X. Liu, X. Wang, D.-M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, Nano Lett. 2014, 14, 3.

[34]

Y. Tang, X. Wang, J. Chen, X. Wang, D. Wang, Z. Mao, Carbon 2021, 174, 98.

[35]

P. Zhai, Q. He, H. Jiang, B. Gao, B. Zhang, Q. Chen, Z. Yang, T. Wang, Y. Gong, Adv. Energy Mater. 2023, 14, 5.

[36]

P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei, L. Wang, W. Liu, Q. Chen, W. Yang, Y. Cui, Adv. Mater. 2021, 33, 13.

[37]

Y. Wang, L. Liu, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 2021, 31, 34.

[38]

P. Zhang, B. Cai, Y. Feng, H. Pan, J. Yao, J. Alloys Compd. 2021, 875, 160077.

[39]

B. Chen, J. Yu, R. Wang, X. Zhang, B. He, J. Jin, H. Wang, Y. Gong, Sci. China Mater. 2021, 65, 139.

[40]

L. Zhu, L. You, Z. Shi, H. Song, S. Li, J. Appl. Polym. Sci. 2017, 134, 41.

[41]

Y. Chu, Y. Mu, L. Zou, Y. Hu, J. Cheng, B. Wu, M. Han, S. Xi, Q. Zhang, L. Zeng, Adv. Mater. 2023, 35, 21.

[42]

X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, Adv. Energy Mater. 2022, 12, 23.

[43]

J. Zhang, P.-F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, Adv. Mater. 2022, 34, 8.

[44]

Z. Tan, Y. Li, X. Xi, S. Jiang, X. Li, X. Shen, S. Hao, J. Zheng, Z. He, ACS Sustain. Chem. Eng. 2022, 10, 11.

[45]

Y. Zhuang, Y. Zhao, Y. Bao, W. Zhang, M. Guan, J. Alloys Compd. 2022, 927, 166967.

[46]

Z. Chen, G. T. Kim, D. Bresser, T. Diemant, J. Asenbauer, S. Jeong, M. Copley, R. J. Behm, J. Lin, Z. Shen, Adv. Energy Mater. 2018, 8, 27.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/