In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes

Jing Sun , Qinping Jian , Bin Liu , Pengzhu Lin , Tianshou Zhao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12769

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12769 DOI: 10.1002/eem2.12769
RESEARCH ARTICLE

In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes

Author information +
History +
PDF

Abstract

Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety, cost-effectiveness, and high capacity. However, the service life of zinc metal anodes is severely constrained by critical challenges, including dendrites, water-induced hydrogen evolution, and passivation. In this study, a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method. The ultrathin interphase layer (∼1 µm) is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1 Å, which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions, contributing to a uniform and highly reversible zinc deposition. With the shielding of the interphase layer, an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and ∼700 h at 1 mA cm−2, far exceeding that of the bare zinc anodes (250 and 70 h). Furthermore, as a proof-of-concept demonstration, the full cell paired with MnO2 cathode demonstrates improved rate performances and stable cycling (1200 cycles at 1 A g−1). This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.

Keywords

2D MOF / desolvation / interphase / ion sieve / zinc anode

Cite this article

Download citation ▾
Jing Sun, Qinping Jian, Bin Liu, Pengzhu Lin, Tianshou Zhao. In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes. Energy & Environmental Materials, 2024, 7(6): e12769 DOI:10.1002/eem2.12769

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun, Z. Wang, H. Wang, Energy Storage Mater. 2021, 35, 19.

[2]

P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem. 2022, 134, e202200598.

[3]

Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen, S. Guo, L. Wang, G. Fang, S. Liang, Escience 2022, 2, 209.

[4]

S. Wang, Y. Zhao, H. Lv, X. Hu, J. He, C. Zhi, H. Li, Small 2023, 2207664.

[5]

J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei, Z. Qi, Z. Wang, C. Xia, H. Liang, Nano Lett. 2022, 22, 1017.

[6]

D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li, Z. Huang, G. Liang, Q. Yang, C. Zhi, Adv. Energy Mater. 2022, 12, 2102707.

[7]

Q. Jian, Z. Guo, L. Zhang, M. Wu, T. Zhao, Chem. Eng. J. 2021, 425, 130643.

[8]

Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye, Nat. Commun. 2023, 14, 4205.

[9]

Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13180.

[10]

J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei, Q. Jiang, Z. Qi, Z. Wang, H. Liang, Small 2022, 18, 2200006.

[11]

Z. Zhang, B. Xi, X. Ma, W. Chen, J. Feng, S. Xiong, SusMat 2022, 2, 114.

[12]

T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. Liang, Energy Environ. Sci. 2020, 13, 4625.

[13]

A. Li, J. Li, Y. He, M. Wu, J. Energy Chem. 2023, 83, 209.

[14]

Y. Pan, Z. Liu, S. Liu, L. Qin, Y. Yang, M. Zhou, Y. Sun, X. Cao, S. Liang, G. Fang, Adv. Energy Mater. 2023, 13, 2203766.

[15]

Y. Zhang, S. Bi, Z. Niu, W. Zhou, S. Xie, Energy Mater. 2022, 2, 200012.

[16]

C. Shen, X. Li, N. Li, K. Xie, J.-G. Wang, X. Liu, B. Wei, ACS Appl. Mater. Interfaces 2018, 10, 25446.

[17]

J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao, R. Huang, G. Wei, A. Liu, L. Li, R. Chen, Adv. Mater. 2021, 33, 2101649.

[18]

Z. Xu, S. Jin, N. Zhang, W. Deng, M. H. Seo, X. Wang, Nano Lett. 2022, 22, 1350.

[19]

P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu, Y. Tan, P. Li, J. Yan, K. Liu, Chem. Eng. J. 2021, 403, 126425.

[20]

W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang, X. Xia, J. Tu, Mater. Today Energy 2021, 20, 100675.

[21]

P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao, T. Zhai, H. Li, Energy Environ. Sci. 2022, 15, 1638.

[22]

C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen, A. Pan, J. Ma, C. Wang, L. Zhu, L. Xie, ACS Energy Lett. 2021, 6, 675.

[23]

Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing, Q. Zhao, W. Wei, X. Ji, J. Ma, L. Chen, J. Mater. Chem. A 2021, 9, 8452.

[24]

Q. Jian, Y. Wan, Y. Lin, M. Ni, M. Wu, T. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 52659.

[25]

X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling, H. Zhang, X.-Y. Kong, Y. Zhao, M. Xue, L. Jiang, J. Am. Chem. Soc. 2022, 144, 11168.

[26]

P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Adv. Sci. 2021, 8, 2100309.

[27]

J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.

[28]

L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Adv. Energy Mater. 2018, 8, 1801090.

[29]

Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun, Y. Tang, X. Ji, H. Wang, Nat. Commun. 2020, 11, 3961.

[30]

P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.

[31]

X. Song, L. Bai, C. Wang, D. Wang, K. Xu, J. Dong, Y. Li, Q. Shen, J. Yang, ACS Nano 2023, 17, 15113.

[32]

M. Zhu, H. Wang, H. Wang, C. Li, D. Chen, K. Wang, Z. Bai, S. Chen, Y. Zhang, Y. Tang, Angew. Chem. Int. Ed. 2024, 63, e202316904.

[33]

F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang, X. Rui, Y. Shao, Y. Yang, S. He, H. Pan, Adv. Mater. 2023, 35, 2208764.

[34]

D. Wang, H. Liu, D. Lv, C. Wang, J. Yang, Y. Qian, Adv. Mater. 2023, 35, 2207908.

[35]

M. Gopalakrishnan, S. Ganesan, M. T. Nguyen, T. Yonezawa, S. Praserthdam, R. Pornprasertsuk, S. Kheawhom, Chem. Eng. J. 2023, 457, 141334.

[36]

X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong, F. Kang, C. Xu, Nano-micro lett. 2020.

[37]

M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao, Y. Song, J. Yang, K. Wang, F. Pan, ACS Appl. Mater. Interfaces 2019, 11, 32046.

[38]

W. Xin, J. Xiao, J. Li, L. Zhang, H. Peng, Z. Yan, Z. Zhu, Energy Storage Mater. 2023, 56, 76.

[39]

H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. 2020, 132, 9463.

[40]

W. He, T. Gu, X. Xu, S. Zuo, J. Shen, J. Liu, M. Zhu, ACS Appl. Mater. Interfaces 2022, 14, 40031.

[41]

M. Cui, B. Yan, F. Mo, X. Wang, Y. Huang, J. Fan, C. Zhi, H. Li, Chem. Eng. J. 2022, 434, 134688.

[42]

X. Zeng, J. Zhao, Z. Wan, W. Jiang, M. Ling, L. Yan, C. Liang, J. Phys. Chem. Lett. 2021, 12, 9055.

[43]

X. Liu, F. Yang, W. Xu, Y. Zeng, J. He, X. Lu, Adv. Sci. 2020, 7, 2002173.

[44]

Z. Wang, H. Chen, H. Wang, W. Huang, H. Li, F. Pan, ACS Energy Lett. 2022, 7, 4168.

[45]

F. Wang, H. Lu, H. Li, J. Li, L. Wang, D. Han, J. Gao, C. Geng, C. Cui, Z. Zhang, Energy Storage Mater. 2022, 50, 641.

[46]

H. Sun, Y. Huyan, N. Li, D. Lei, H. Liu, W. Hua, C. Wei, F. Kang, J.-G. Wang, Nano Lett. 2023, 23, 1726.

[47]

Y. Xiang, L. Zhou, P. Tan, S. Dai, Y. Wang, S. Bao, Y. Lu, Y. Jiang, M. Xu, X. Zhang, ACS Nano 2023, 9, 9427.

[48]

D. Xu, X. Ren, Y. Xu, Y. Wang, S. Zhang, B. Chen, Z. Chang, A. Pan, H. Zhou, Adv. Sci. 2023, 10, 2303773.

[49]

Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356.

[50]

H. Ma, J. Yu, M. Chen, X. Han, J. Chen, B. Liu, S. Shi, Adv. Funct. Mater. 2023, 33, 2307384.

[51]

Y. Li, L. Lin, M. Tu, P. Nian, A. J. Howarth, O. K. Farha, J. Qiu, X. Zhang, Nano Res. 1850, 2018, 11.

[52]

W. Li, P. Su, Z. Li, Z. Xu, F. Wang, H. Ou, J. Zhang, G. Zhang, E. Zeng, Nat. Commun. 2017, 8, 406.

[53]

X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao, H. Liang, H. Wang, D. Chao, F. Wang, Y. Qiao, Joule 2023, 7, 1145.

[54]

X. Zhou, Q. Zhang, Z. Zhu, Y. Cai, H. Li, F. Li, Angew. Chem. 2022, 134, e202205045.

[55]

Q. Jian, Y. Wan, J. Sun, M. Wu, T. Zhao, J. Mater. Chem. A 2020, 8, 20175.

[56]

R. Wang, M. Yao, M. Yang, J. Zhu, J. Chen, Z. Niu, Proc. Natl. Acad. Sci. USA 2023, 120, e2221980120.

[57]

X. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503.

[58]

G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.

[59]

Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 1938, 2019, 12.

[60]

L. Hong, L. Y. Wang, Y. Wang, X. Wu, W. Huang, Y. Zhou, K. X. Wang, J. S. Chen, Adv. Sci. 2022, 9, 2104866.

[61]

Q. Jian, T. Wang, J. Sun, B. Liu, T. Zhao, Chem. Eng. J. 2023, 466, 143189.

[62]

M. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, Energy Storage Mater. 2022, 45, 1175.

[63]

Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Adv. Mater. 2021, 33, 2007388.

[64]

W. W. Rudolph, C. C. Pye, Phys. Chem. Chem. Phys. 1999, 1, 4583.

[65]

W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, J. Am. Chem. Soc. 2017, 139, 9775.

[66]

S. Wang, Z. Yuan, X. Zhang, S. Bi, Z. Zhou, J. Tian, Q. Zhang, Z. Niu, Angew. Chem. 2021, 133, 7132.

[67]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[68]

B. Vlaisavljevich, J. Huck, Z. Hulvey, K. Lee, J. A. Mason, J. B. Neaton, J. R. Long, C. M. Brown, D. Alfè, A. Michaelides, Chem. Eur. J. 2017, 121, 4139.

[69]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[70]

K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/