Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries

Hui Li , Gang Wang , Jin Hu , Jun Li , Jiaxu Huang , Shaolin Xu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12768

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) :e12768 DOI: 10.1002/eem2.12768
RESEARCH ARTICLE

Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries

Author information +
History +
PDF

Abstract

The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm−2. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm−2. Furthermore, when integrated with LiFePO4 cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.

Keywords

copper current collector / heat treatment / laser processing / lithium metal battery / selective crystalline orientation

Cite this article

Download citation ▾
Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu. Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries. Energy & Environmental Materials, 2024, 7(6): e12768 DOI:10.1002/eem2.12768

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, Adv. Energy Mater. 2018, 8, 1800933.

[2]

X. Q. Zhang, C. Z. Zhao, J. Q. Huang, Q. Zhang, Engineering 2018, 4, 831.

[3]

Z. Wen, H. Li, H. Li, H. Hua, F. Wang, Y. Gu, Y. Yang, J. Zhao, J. Power Sources 2021, 509, 230370.

[4]

I. Yoon, S. Jurng, D. P. Abraham, B. L. Lucht, P. R. Guduru, Energy Storage Mater. 2020, 25, 296.

[5]

H. Zhang, S. Ju, G. Xia, D. Sun, X. Yu, Adv. Funct. Mater. 2021, 31, 2009712.

[6]

A. Mukhopadhyay, M. K. Jangid, Science 2018, 359, 1463.

[7]

B. Han, X. Li, Q. Wang, Y. Zou, G. Xu, Y. Cheng, Z. Zhang, Y. Zhao, Y. Deng, J. Li, M. Gu, Adv. Mater. 2022, 34, 2270101.

[8]

G. Zheng, S. W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 2014, 9, 618.

[9]

K. Huang, P. Zhai, J. Song Chen, J. Xiao, Y. Gong, X. Zhang, X. Peng, Y. Xiang, Electrochem. Commun. 2022, 144, 107395.

[10]

X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Adv. Mater. 2016, 28, 2888.

[11]

H. An, Y. Roh, Y. Jo, H. Lee, M. Lim, M. Lee, Y. M. Lee, H. Lee, Energy Environ. Mater. 2022, 6, eem2.12397.

[12]

A. M. Haregewoin, A. S. Wotango, B.-J. Hwang, Energy Environ. Sci. 1955, 2016, 9.

[13]

D. Aurbach, I. Weissman, A. Zaban, O. Chusid, Electrochim. Acta 1994, 39, 51.

[14]

J. T. Dudley, D. P. Wilkinson, G. Thomas, R. LeVae, S. Woo, H. Blom, C. Horvath, M. W. Juzkow, B. Denis, P. Juric, P. Aghakian, J. R. Dahn, J. Power Sources 1991, 35, 59.

[15]

X. Gao, X. Yang, K. Adair, J. Liang, Q. Sun, Y. Zhao, R. Li, T. K. Sham, X. Sun, Adv. Funct. Mater. 2020.

[16]

X. Yang, Q. Sun, C. Zhao, X. Gao, K. R. Adair, Y. Liu, J. Luo, X. Lin, J. Liang, H. Huang, L. Zhang, R. Yang, S. Lu, R. Li, X. Sun, Nano Energy 2019, 61, 567.

[17]

J. Chen, J. Zhao, L. Lei, P. Li, J. Chen, Y. Zhang, Y. Wang, Y. Ma, D. Wang, Nano Lett. 2020, 20, 3403.

[18]

J. Qian, S. Wang, Y. Li, M. Zhang, F. Wang, Y. Zhao, Q. Sun, L. Li, F. Wu, R. Chen, Adv. Funct. Mater. 2021, 31, 2006950.

[19]

S.-H. Wang, Y.-X. Yin, T.-T. Zuo, W. Dong, J.-Y. Li, J.-L. Shi, C.-H. Zhang, N.-W. Li, C.-J. Li, Y.-G. Guo, Adv. Mater. 2017, 29, 1703729.

[20]

Q. Zhang, J. Luan, Y. Tang, X. Ji, S. Wang, H. Wang, J. Mater. Chem. A 2018, 6, 18444.

[21]

S. Liu, X. Zhang, R. Li, L. Gao, J. Luo, Energy Storage Mater. 2018, 14, 143.

[22]

S. Cui, P. Zhai, W. Yang, Y. Wei, J. Xiao, L. Deng, Y. Gong, Small 2020, 16, 1905620.

[23]

H. S. Sand, Proc. Phys. Soc. Lond. 1899, 17, 496.

[24]

W. Dong, K. Wang, J. Han, Y. Yu, G. Liu, C. Li, P. Tong, W. Li, C. Yang, Z. Lu, ACS Appl. Mater. Interfaces 2021, 13, 8417.

[25]

Y. Liu, X. Yin, X. Shen, P. Zou, X. Qin, C. Yang, Q. Zhang, F. Kang, G. Chen, B. Li, Adv. Funct. Mater. 2020, 30, 2002522.

[26]

H. Shen, P. Tang, Q. Wei, Y. Zhang, T. Yu, H. Yang, R. Zhang, K. Tai, J. Tan, S. Bai, F. Li, Small 2023, 19, 2206000.

[27]

Z. Li, X. Huang, L. Kong, N. Qin, Z. Wang, L. Yin, Y. Li, Q. Gan, K. Liao, S. Gu, T. Zhang, H. Huang, L. Wang, G. Luo, X. Cheng, Z. Lu, Energy Storage Mater. 2022, 45, 40.

[28]

B. Hong, H. Fan, X.-B. Cheng, X. Yan, S. Hong, Q. Dong, C. Gao, Z. Zhang, Y. Lai, Q. Zhang, Energy Storage Mater. 2019, 16, 259.

[29]

K. Ishikawa, Y. Ito, S. Harada, M. Tagawa, T. Ujihara, Cryst. Growth Des. 2017, 17, 2379.

[30]

Y.-J. Kim, S. H. Kwon, H. Noh, S. Yuk, H. Lee, H. S. Jin, J. Lee, J.-G. Zhang, S. G. Lee, H. Guim, H.-T. Kim, Energy Storage Mater. 2019, 19, 154.

[31]

K. Ishikawa, S. Harada, M. Tagawa, T. Ujihara, ACS Appl. Mater. Interfaces 2020, 12, 9341.

[32]

Y. Hu, H. Li, Z. Chen, W. Cen, Q. Wang, Y. Chen, A. Davoodi, W. Liu, Chem. Eng. J. 2023, 466, 143084.

[33]

W. Bao, R. Wang, K. Sun, C. Qian, Y. Zhang, J. Li, ACS Appl. Mater. Interfaces 2022, 14, 38696.

[34]

A. Fu, C. Wang, J. Peng, M. Su, F. Pei, J. Cui, X. Fang, J. Li, N. Zheng, Adv. Funct. Mater. 2021, 31, 2009805.

[35]

X. Qiu, M. Yu, G. Fan, J. Liu, Y. Wang, K. Zhao, J. Ding, F. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 6367.

[36]

E. M. Zielinski, R. P. Vinci, J. C. Bravman, J. Appl. Phys. 1994, 76, 4516.

[37]

J. Koike, M. Wada, M. Sanada, K. Maruyama, Appl. Phys. Lett. 2002, 81, 1017.

[38]

T.-L. Lu, J. A. Wu, C. Chen, Cryst. Growth Des. 2020, 20, 1485.

[39]

T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Science 2013, 341, 1500.

[40]

W. Peng, J. Gao, T. Lu, B. Sun, X. Zhang, L. Zhang, S. Tu, Acta Mater. 2023, 260, 119236.

[41]

W. Yao, J. Zhang, J. Ji, H. Yang, B. Zhou, X. Chen, P. Bøggild, P. U. Jepsen, J. Tang, F. Wang, L. Zhang, J. Liu, B. Wu, J. Dong, Y. Liu, Adv. Mater. 2022, 34, 2108608.

[42]

S. D. Jadhav, S. Dadbakhsh, L. Goossens, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, J. Mater. Process. Technol. 2019, 270, 47.

[43]

H. L. Wei, J. W. Elmer, T. DebRoy, Acta Mater. 2017, 133, 10.

[44]

W. Bao, R. Wang, B. Li, C. Qian, Z. Zhang, J. Li, F. Liu, J. Mater. Chem. A 2021, 9, 20957.

[45]

I. Yang, J. H. Jeong, J. Y. Seok, S. Kim, Adv. Energy Mater. 2023, 13, 2202321.

[46]

C.-L. Lu, H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo, K.-N. Tu, NPG Asia Mater. 2014, 6, e135.

[47]

K. Zhang, I. V. Alexandrov, R. Z. Valiev, K. Lu, J. Appl. Phys. 1996, 80, 5617.

[48]

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J.-Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, L. V. Zhigilei, MRS Bull. 2016, 41, 960.

[49]

W. Liu, Y. Luo, Y. Hu, Z. Chen, Q. Wang, Y. Chen, N. Iqbal, D. Mitlin, Adv. Energy Mater. 2023, 14, 2302261.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/