Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction

Xueke Wang , Jinyu Zi , Yi Chen , Qiang Wu , Zhimin Xiang , Yongqiang Tu , Peng Yang , Yanfen Wan

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12767

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12767 DOI: 10.1002/eem2.12767
RESEARCH ARTICLE

Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction

Author information +
History +
PDF

Abstract

Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive. Herein, we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin (MM i-skin) and thermoelectric self-power staffs, which exhibits high sensitivity simultaneously. The MM i-skin with multi-stage “interlocked” configurations achieved precise recognition of subtle signals, where the sensitivity reached up to 3.95 kPa−1, as well as response time of 46 ms, cyclic stability (over 1500 cycles), a wide detection range of 0–200 kPa. Furthermore, we developed the thermoelectricity nanogenerator, piezoelectricity nanogenerator, and piezocapacitive sensing as an integrated tri-modal pressure sensing, denoted as P-iskin, T-iskin, and C-iskin, respectively. This multifunctional ionic skin enables real-time monitoring of weak body signals, rehab guidance, and robotic motion recognition, demonstrating potential for Internet of things (IoT) applications involving the artificial intelligence-motivated sapiential healthcare Internet (SHI) and widely distributed human-machine interaction (HMI).

Keywords

bio-template method / integrated device / ionic skin / skin-like microstructure / tri-modal pressure sensing

Cite this article

Download citation ▾
Xueke Wang, Jinyu Zi, Yi Chen, Qiang Wu, Zhimin Xiang, Yongqiang Tu, Peng Yang, Yanfen Wan. Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction. Energy & Environmental Materials, 2024, 7(6): e12767 DOI:10.1002/eem2.12767

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. R. DiPalma, R. McMichael, M. DiPalma, Science (New York, N.Y.) 1966, 152, 539.

[2]

N. Chen, R. Rink, H. Zhang, Presented at 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems—Human Robot Interaction and Cooperative Robots, Pittsburgh, Pa. 1995.

[3]

J. Dargahi, S. Najarian, Int. J. Med. Robot. Comput. Assist. Surg 2004, 1, 23.

[4]

G. Lee, J. Son, D. Kim, H. J. Ko, S. G. Lee, K. Cho, Small 2022, 18, 9.

[5]

T. Hagihara, H. Mano, T. Miura, M. Hasebe, M. Toyota, Nat. Commun. 2022, 13, 9.

[6]

J. Gould, Nature 2018, 563, S84.

[7]

R. S. Dahiya, G. Metta, M. Valle, G. Sandini, IEEE Trans. Robot. 2010, 26, 1.

[8]

J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S. Y. Kim, H. Ko, ACS Nano 2014, 8, 12020.

[9]

C. Jeong, H. Ko, H. T. Kim, K. Sun, T. H. Kwon, H. E. Jeong, Y. B. Park, ACS Appl. Mater. Interfaces 2020, 12, 18813.

[10]

M. Ha, S. Lim, J. Park, D. S. Um, Y. Lee, H. Ko, Adv. Funct. Mater. 2015, 25, 2841.

[11]

Y. N. Hao, Q. Y. Yan, H. J. Liu, X. Y. He, P. H. Zhang, X. H. Qin, R. R. Wang, J. Sun, L. M. Wang, Y. Cheng, Adv. Funct. Mater. 2023, 3, 88112.

[12]

J. Q. Wang, B. H. Wu, P. Wei, S. T. Sun, P. Y. Wu, Nat. Commun. 2022, 13, 12.

[13]

W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury, J. C. Lai, H. Gong, S. Niu, X. Yan, Y. Zheng, C. C. Shih, R. Ning, Q. Lin, D. Li, Y. H. Kim, J. Kim, Y. X. Wang, C. Zhao, C. Xu, X. Ji, Y. Nishio, H. Lyu, J. B. H. Tok, Z. Bao, Science 2023, 380, 735.

[14]

J. L. Guo, C. Q. Xiang, A. Conn, J. Rossiter, Soft Robot. 2020, 7, 309.

[15]

M. K. Kim, J. H. Cho, H. B. Shin, S. W. Lee, IEEE, presented at 11th International Winter Conference on Brain-Computer Interface (BCI), Tech Univ Berlin, Korea Univ Inst Artificial Intelligence, Electr Network. February 2023.

[16]

K. Zhou, S. Wang, L. Xu, H. Li, Y. Wang, Z. Qiu, G. Zhang, Z. Zhao, B. Z. Tang, Matter 2023, 6, 3449.

[17]

L. Chen, R. L. Li, S. L. Yuan, A. P. Chen, Y. Li, T. Zhang, L. Wei, Q. C. Zhang, Q. W. Li, Matter 2023, 6, 925.

[18]

L. M. Wang, N. Li, Y. F. Zhang, P. J. Di, M. K. Li, M. Lu, K. Liu, Z. H. Li, J. Y. Ren, L. Q. Zhang, P. B. Wan, Matter 2022, 5, 3417.

[19]

H. S. Niu, S. Gao, W. J. Yue, Y. Li, W. J. Zhou, H. Liu, Small 2020, 16, 12.

[20]

T. Yang, W. L. Deng, X. Chu, X. Wang, Y. T. Hu, X. Fan, J. Song, Y. Y. Gao, B. B. Zhang, G. Tian, D. Xiong, S. Zhong, L. H. Tang, Y. H. Hu, W. Q. Yang, ACS Nano 2021, 15, 11555.

[21]

F. Basarir, Z. Madani, J. Vapaavuori, Adv. Mater. Interfaces 2022, 9, 18.

[22]

Q. X. Liu, Y. Liu, J. L. Shi, Z. G. Liu, Q. Wang, C. F. Guo, Nano-Micro Lett. 2022, 14, 12.

[23]

H. S. Niu, H. Li, S. Gao, Y. Li, X. Wei, Y. K. Chen, W. J. Yue, W. J. Zhou, G. Z. Shen, Adv. Mater. 2022, 34, 11.

[24]

S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang, G. Tian, L. Deng, H. Huang, J. Huang, B. Lan, W. Yang, Adv. Funct. Mater. 2023, 33, 2214503.

[25]

S. Wang, B. Lan, Y. Gao, Y. Xie, H. He, D. Xiong, G. Tian, T. Yang, J. Huang, Y. Ao, Y. Sun, W. Yang, W. Deng, Viewpoints 2022, 3, 20220031.

[26]

K. Q. Xia, Z. Y. Zhu, H. Z. Zhang, Z. W. Xu, Appl. Phys. A-Mater. Sci. Process. 2018, 124, 7.

[27]

L. Zhao, S. H. Yu, J. J. Li, Z. C. Song, M. Y. Wu, X. Y. Wang, X. H. Wang, Curr. Appl. Phys. 2021, 31, 29.

[28]

H. Hu, D. R. Wang, H. M. Tian, Q. Y. Huang, C. H. Wang, X. L. Chen, Y. Gao, X. M. Li, X. M. Chen, Z. J. Zheng, J. Y. Shao, Adv. Funct. Mater. 2022, 32, 9.

[29]

J. C. Li, J. Yin, M. G. V. Wee, A. Chinnappan, S. Ramakrishna, Adv. Fiber Mater. 2023, 5, 1417.

[30]

D. Choi, Y. Lee, Z. H. Lin, S. M. Cho, M. Kim, C. K. Ao, S. Soh, C. Sohn, C. K. Jeong, J. W. Lee, M. B. Lee, S. A. Lee, J. Ryu, P. Parashar, Y. J. Cho, J. Ahn, I. Kim, F. Jiang, P. S. Lee, G. Khandelwal, S. J. Kim, H. S. Kim, H. C. Song, M. Kim, J. Nah, W. Kim, H. G. Menge, Y. T. Park, W. Xu, J. H. Hao, H. Park, J. H. Lee, D. M. Lee, S. W. Kim, J. Y. Park, H. X. Zhang, Y. L. Zi, R. Guo, J. Cheng, Z. Yang, Y. N. Xie, S. M. Lee, J. H. Chung, I. Oh, J. S. Kim, T. H. Cheng, Q. Gao, G. Cheng, G. Q. Gu, M. Shim, J. H. Jung, C. W. Yun, C. Zhang, G. X. Liu, Y. F. Chen, S. Kim, X. Y. Chen, J. Hu, X. Pu, Z. H. Guo, X. D. Wang, J. Chen, X. Xiao, X. Xie, M. Jarin, H. L. Zhang, Y. C. Lai, T. Y. Y. He, H. Kim, I. Park, J. Ahn, N. D. Huynh, Y. Yang, Z. L. Wang, J. M. Baik, D. Choi, ACS Nano 2023, 17, 11087.

[31]

G. M. Ye, T. S. Jin, X. K. Wang, Y. Chen, Q. Wu, Y. F. Wan, P. Yang, Nano Energy 2023, 113, 11.

[32]

G. M. Ye, Y. F. Wan, J. M. Wu, W. B. Zhuang, Z. Q. Zhou, T. S. Jin, J. Y. Zi, D. D. Zhang, X. M. Geng, P. Yang, Nano Energy 2022, 97, 14.

[33]

Y. H. Jia, Q. L. Jiang, H. D. Sun, P. P. Liu, D. H. Hu, Y. Z. Pei, W. S. Liu, X. Crispin, S. Fabiano, Y. G. Ma, Y. Cao, Adv. Mater. 2021, 33, 46.

[34]

Z. Q. Zhou, Y. F. Wan, J. Y. Zi, G. M. Ye, T. S. Jin, X. M. Geng, W. B. Zhuang, P. Yang, Mater. Today Sustain. 2023, 21, 9.

[35]

L. H. Li, M. M. Hao, X. Q. Yang, F. Q. Sun, Y. Y. Bai, H. Y. Ding, S. Q. Wang, T. Zhang, Nano Energy 2020, 72, 9.

[36]

K. Han, D. Zhang, W. Zhuang, Y. Wan, P. Yang, J. Mater. Chem. A 2023, 11, 17112.

[37]

L. H. Li, Z. G. Chen, M. M. Hao, S. Q. Wang, F. Q. Sun, Z. G. Zhao, T. Zhang, Nano Lett. 2019, 19, 5544.

[38]

X. Geng, D. Zhang, Z. Zheng, G. Ye, S. Li, H. Tu, Y. Wan, P. Yang, Nano Energy 2021, 82, 105700.

[39]

G. D. Fan, K. K. Liu, H. Su, Y. Q. Luo, Y. Geng, L. Y. Chen, B. J. Wang, Z. P. Mao, X. F. Sui, X. L. Feng, Chem. Eng. J. 2022, 434, 11.

[40]

J. M. Ma, S. A. Firdosy, R. B. Kaner, J. P. Fleurial, V. A. Ravi, J. Mater. Sci. 2014, 49, 1150.

[41]

Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. P. Dariel, Scr. Mater. 2008, 58, 251.

[42]

T. Watanabe, E. Oe, Y. Mizutani, T. Ono, Soft Matter 2023, 19, 2745.

[43]

B. W. Yang, W. Yuan, ACS Appl. Mater. Interfaces 2019, 11, 16765.

[44]

K. K. Liu, J. C. Lv, G. D. Fan, B. J. Wang, Z. P. Mao, X. F. Sui, X. L. Feng, Adv. Funct. Mater. 2022, 32, 12.

[45]

Z. Q. Shen, X. Y. Zhu, C. Majidi, G. Y. Gu, Adv. Mater. 2021, 33, 12.

[46]

S. K. Shalu, R. K. Chaurasia, S. C. Singh, J. Phys. Chem. B 2013, 117, 897.

[47]

W. Chen, Z. Xing, Y. Wei, X. Y. Zhang, Q. G. Zhang, Polymer 2023, 268, 10.

[48]

P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.

[49]

Z. Sha, C. Boyer, G. Li, Y. Y. Yu, F. M. Allioux, K. Kalantar-Zadeh, C. H. Wang, J. Zhang, Nano Energy 2022, 92, 15.

[50]

H. L. Cheng, X. He, Z. Fan, J. Y. Ouyang, Adv. Energy Mater. 2019, 9, 7.

[51]

Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Polym. Test. 2004, 23, 791.

[52]

G. R. Peng, X. J. Zhao, Z. J. Zhan, S. Z. Ci, Q. Wang, Y. J. Liang, M. L. Zhao, RSC Adv. 2014, 4, 16849.

[53]

S. J. Han, C. R. Liu, Z. B. Huang, J. W. Zheng, H. H. Xu, S. Chu, J. Wu, C. Liu, Adv. Mater. Technol. 2019, 4, 9.

[54]

Q. F. Du, L. L. Liu, R. T. Tang, J. Ai, Z. J. Wang, Q. Q. Fu, C. X. Li, Y. Chen, X. Feng, Adv. Mater. Technol. 2021, 6, 8.

[55]

W. Li, J. Zhang, J. R. Niu, X. Jin, X. M. Qian, C. F. Xiao, W. Y. Wang, Nano Energy 2022, 99, 13.

[56]

S. Gong, W. Schwalb, Y. W. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. L. Cheng, Nat. Commun. 2014, 5, 8.

[57]

Y. Bao, J. C. Xu, R. Y. Guo, J. Z. Ma, Prog. Chem. 2023, 35, 709.

[58]

K. Tao, J. H. Yu, J. Y. Zhang, A. C. Bao, H. W. Hu, T. Ye, Q. L. Ding, Y. Z. Wang, H. B. Lin, J. Wu, H. L. Chang, H. X. Zhang, W. Z. Yuan, ACS Nano 2023, 17, 16160.

[59]

J. H. Chen, L. Zhang, Y. Y. Tu, Q. Zhang, F. Peng, W. Zeng, M. Q. Zhang, X. M. Tao, Nano Energy 2021, 88, 8.

[60]

C. Liu, Q. K. Li, S. J. Wang, W. S. Liu, N. X. Fang, S. P. Feng, Nano Energy 2022, 92, 9.

[61]

Y. Liu, Y. Hu, J. J. Zhao, G. Wu, X. M. Tao, W. Chen, Small 2016, 12, 5074.

[62]

C. Lu, X. Chen, Chem. Phys. Lett. 2022, 803, 5.

[63]

Y. Dobashi, D. Yao, Y. Petel, T. N. Nguyen, M. S. Sarwar, Y. Thabet, C. L. W. Ng, E. S. Glitz, G. T. M. Nguyen, C. Plesse, F. Vidal, C. A. Michal, J. D. W. Madden, Science 2022, 376, 502.

[64]

X. Xu, T. T. Zhong, N. Zuo, Z. X. Li, D. Y. Li, L. J. Pi, P. Chen, M. H. Wu, T. Y. Zhai, X. Zhou, ACS Nano 2022, 16, 8141.

[65]

Y. C. Wang, L. M. Vu, T. Lu, C. L. Xu, Y. Liu, J. Z. Ou, Y. X. Li, ACS Appl. Mater. Interfaces 2020, 12, 51662.

[66]

V. K. Tiwari, Y. Lee, G. Song, K. Lib Kim, Y. Jung Park, C. Park, J. Polym. Sci. Pt. B-Polym. Phys. 2018, 56, 795.

[67]

C.-Y. Tang, X. Zhao, J. Jia, S. Wang, X.-J. Zha, B. Yin, K. Ke, R.-Y. Bao, Z.-Y. Liu, Y. Wang, K. Zhang, M.-B. Yang, W. Yang, Nano Energy 2021, 90, 90.

[68]

M. Fortunato, H. C. Bidsorkhi, C. R. Chandraiahgari, G. De Bellis, F. Sarto, M. S. Sarto, IEEE Trans. Nanotechnol. 2018, 17, 955.

[69]

L. R. Liang, H. C. Lv, X. L. Shi, Z. X. Liu, G. M. Chen, Z. G. Chen, G. X. Sun, Mater. Horizons 2021, 8, 2750.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/