Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction
Xueke Wang , Jinyu Zi , Yi Chen , Qiang Wu , Zhimin Xiang , Yongqiang Tu , Peng Yang , Yanfen Wan
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12767
Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive. Herein, we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin (MM i-skin) and thermoelectric self-power staffs, which exhibits high sensitivity simultaneously. The MM i-skin with multi-stage “interlocked” configurations achieved precise recognition of subtle signals, where the sensitivity reached up to 3.95 kPa−1, as well as response time of 46 ms, cyclic stability (over 1500 cycles), a wide detection range of 0–200 kPa. Furthermore, we developed the thermoelectricity nanogenerator, piezoelectricity nanogenerator, and piezocapacitive sensing as an integrated tri-modal pressure sensing, denoted as P-iskin, T-iskin, and C-iskin, respectively. This multifunctional ionic skin enables real-time monitoring of weak body signals, rehab guidance, and robotic motion recognition, demonstrating potential for Internet of things (IoT) applications involving the artificial intelligence-motivated sapiential healthcare Internet (SHI) and widely distributed human-machine interaction (HMI).
bio-template method / integrated device / ionic skin / skin-like microstructure / tri-modal pressure sensing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |