Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction

Joonhee Ma , Jin Hyuk Cho , Chaehyeon Lee , Moon Sung Kang , Sungkyun Choi , Ho Won Jang , Sang Hyun Ahn , Seoin Back , Soo Young Kim

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12766

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) :e12766 DOI: 10.1002/eem2.12766
RESEARCH ARTICLE

Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction

Author information +
History +
PDF

Abstract

The development of cost-effective, highly efficient, and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction (HER). Herein, a simplified synthesis protocol was designed to achieve a self-standing electrode, composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters (ACP/RuSAC+C) via acid activation, immersion, and high-temperature pyrolysis. Ab initio molecular dynamics (AIMD) calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper. Furthermore, the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect, tuning the electronic structure and thereby significantly enhancing their catalytic performance. Notably, the ACP/RuSAC+C exhibits a remarkable turnover frequency (TOF) of 18 s−1 and an exceptional mass activity (MA) of 2.2 A mg−1, surpassing the performance of conventional Pt electrodes. The self-standing electrode, featuring harmoniously coexisting Ru states, stands out as a prospective choice for advancing HER catalysts, enhancing energy efficiency, productivity, and selectivity.

Keywords

electrocatalysis / electronic coupling effect / hydrogen evolution reaction / selfstanding electrode

Cite this article

Download citation ▾
Joonhee Ma, Jin Hyuk Cho, Chaehyeon Lee, Moon Sung Kang, Sungkyun Choi, Ho Won Jang, Sang Hyun Ahn, Seoin Back, Soo Young Kim. Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction. Energy & Environmental Materials, 2024, 7(6): e12766 DOI:10.1002/eem2.12766

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y.-J. Jo, W. S. Jung, B. Lim, Korean J. Met. Mater. 2023, 61, 231.

[2]

E. A. Moges, C.-Y. Chang, M.-C. Tsai, W.-N. Su, B. J. Hwang, EES. Catal. 2023, 1, 413.

[3]

Z. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian, Y. Chen, Energy Environ. Sci. 2020, 13, 3185.

[4]

H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T.-H. Le, T. P. Nguyen, Q. T. Trinh, S. H. Ahn, D.-V. N. Vo, S. Y. Kim, Q. V. Le, Arab. J. Chem. 2020, 13, 3653.

[5]

T. Liang, S. Lenus, Y. Liu, Y. Chen, T. Sakthivel, F. Chen, F. Ma, Z. Dai, Energy Environ. Mater. 2023, 6, e12332.

[6]

X.-L. Liu, Y.-C. Jiang, J.-T. Huang, W. Zhong, B. He, P.-J. Jin, Y. Chen, Carbon Energy 2023, 5, e367.

[7]

H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Energy Environ. Mater. 2023, 6, e12441.

[8]

Z.-M. Wang, Q.-L. Hong, X.-H. Wang, H. Huang, Y. Chen, S.-N. Li, Acta Phys. -Chim. Sin. 2023, 39, 2303028.

[9]

S. Bae, S. Lee, H. Ryu, W.-J. Lee, Korean J. Met. Mater. 2022, 60, 577.

[10]

V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H. W. Jang, C. Hu, P. Singh, P. Raizada, W. Peng, S. S. Lam, C. Xia, C. Nguyen, S. Y. Kim, Q. V. Le, Chem. Eng. J. 2020, 402, 126184.

[11]

N. Dubouis, A. Grimaud, Chem. Sci. 2019, 10, 9165.

[12]

V.-H. Nguyen, B.-S. Nguyen, C.-C. Hu, C. C. Nguyen, D. L. T. Nguyen, M. T. N. Dinh, D.-V. N. Vo, Q. T. Trinh, M. Shokouhimehr, A. Hasani, S. Y. Kim, Q. V. Le, Nano 2020, 10, 602.

[13]

T. P. Nguyen, D. L. T. Nguyen, V.-H. Nguyen, T.-H. Le, D.-V. N. Vo, Q. T. Trinh, S.-R. Bae, S. Y. Chae, S. Y. Kim, Q. V. Le, Nano 2020, 10, 337.

[14]

E. B. Lee, S. G. Jo, S. J. Kim, G.-R. Park, J. W. Lee, Korean J. Met. Mater. 2023, 61, 190.

[15]

Y. Wu, L. Wang, T. Bo, Z. Chai, J. K. Gibson, W. Shi, Adv. Funct. Mater. 2023, 33, 2214375.

[16]

J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin, Z. Sun, X. Ye, X. Zheng, H. Pan, J. Zhu, S. Chen, W. Zhang, S. Wei, J. Liu, J. Am. Chem. Soc. 2019, 141, 14515.

[17]

Y. Yang, Y. Yang, Z. Pei, J.-H. Wu, C. Tan, H. Wang, L. Wei, A. Mahmood, C. Yan, J. Dong, S. Zhao, Y. Chen, Matter 2020, 3, 1442.

[18]

H. Yao, X. Wang, K. Li, C. Li, C. Zhang, J. Zhou, Z. Cao, H. Wang, M. Gu, M. Huang, H. Jiang, Appl. Catal. B Environ. 2022, 312, 121378.

[19]

T. Xie, J. Hu, Q. Xu, C. Zhou, J. Colloid Interface Sci. 2023, 630, 688.

[20]

X. Ao, W. Zhang, Z. Li, J.-G. Li, L. Soule, X. Huang, W.-H. Chiang, H. M. Chen, C. Wang, M. Liu, X. C. Zeng, ACS Nano 2019, 13, 11853.

[21]

X. Lu, Y. Li, D. Dong, Y. Wan, R. Li, L. Xiao, D. Wang, L. Liu, G. Wang, J. Zhang, M. An, P. Yang, J. Colloid Interface Sci. 2024, 653, 654.

[22]

M. Liu, J. Lee, T.-C. Yang, F. Zheng, J. Zhao, C.-M. Yang, L. Y. S. Lee, Small Methods 2021, 5, 2001165.

[23]

S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup, K. Daasbjerg, J. Mater. Chem. A 2021, 9, 1583.

[24]

B. Geng, F. Yan, X. Zhang, Y. He, C. Zhu, S.-L. Chou, X. Zhang, Y. Chen, Adv. Mater. 2021, 33, 2106781.

[25]

J. Li, J. Zhang, J. Shen, H. Wu, H. Chen, C. Yuan, N. Wu, G. Liu, D. Guo, X. Liu, Mater. Chem. Front. 2023, 7, 567.

[26]

L. Huang, Z. Li, S. Sun, G. Sun, Y. Li, S. Han, J. Lian, J. Alloys Compd. 2022, 926, 166870.

[27]

B. K. Kim, M. J. Kim, J. J. Kim, ACS Appl. Mater. Interfaces 2021, 13, 11940.

[28]

C. Liu, C. Sun, Y. Gao, W. Lan, S. Chen, ACS Omega 2021, 6, 19153.

[29]

W. Zhu, X. Zhang, Y. Yin, Y. Qin, J. Zhang, Q. Wang, Electrochim. Acta 2018, 291, 328.

[30]

J. Sun, J. Xu, H. Jiang, X. Zhang, D. Niu, ChemElectroChem 1869, 2020, 7.

[31]

H.-Y. Lin, Y.-W. Chen, Thermochim. Acta 2004, 419, 283.

[32]

S. F. Yin, B. Q. Xu, W. X. Zhu, C. F. Ng, X. P. Zhou, C. T. Au, Catal. Today 2004, 93, 27.

[33]

H. Fang, S. Wu, T. Ayvali, J. Zheng, J. Fellowes, P.-L. Ho, J. C. Leung, A. Large, G. Held, R. Kato, K. Suenaga, Y. I. A. Reyes, H. V. Thang, H. Yi, T. Chen, S. C. E. Tsang, Nat. Commun. 2023, 14, 647.

[34]

M. Jedrzejczyk, E. Soszka, J. Goscianska, M. Kozanecki, J. Grams, A. M. Ruppert, Molecules 2020, 25, 5362.

[35]

X. Xue, J. Liu, D. Rao, S. Xu, W. Bing, B. Wang, S. He, M. Wei, Cat. Sci. Technol. 2017, 7, 650.

[36]

P. Su, W. Pei, X. Wang, Y. Ma, Q. Jiang, J. Liang, S. Zhou, J. Zhao, J. Liu, G. Q. Lu, Angew. Chem. Int. Ed. 2021, 60, 16044.

[37]

Y. Chen, T. He, Q. Liu, Y. Hu, H. Gu, L. Deng, H. Liu, Y. Liu, Y.-N. Liu, Y. Zhang, S. Chen, Appl. Catal. 2023, 323, 122163.

[38]

S. Back, M. S. Yeom, Y. Jung, ACS Catal. 2015, 5, 5089.

[39]

X. Wang, Y. Zhao, L. Wang, W. Peng, J. Feng, D. Li, B.-J. Su, J.-Y. Juang, Y. Ma, Y. Chen, F. Hou, S. Zhou, H. K. Liu, S. X. Dou, J. Liu, J. Liang, Adv. Funct. Mater. 2022, 32, 2111733.

[40]

J. H. Cho, C. Lee, S. H. Hong, H. Y. Jang, S. Back, M.-G. Seo, M. Lee, H.-K. Min, Y. Choi, Y. J. Jang, S. H. Ahn, H. W. Jang, S. Y. Kim, Adv. Mater. 2022, 35, 2208224.

[41]

J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl Acad. Sci. USA 2011, 108, 937.

[42]

Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao, L. Mi, Q. Huo, H. Yang, J. Liu, C. He, Nat. Commun. 2022, 13, 3958.

[43]

J. H. Cho, J. Ma, C. Lee, J. W. Lim, Y. Kim, H. Y. Jang, J. Kim, M.-G. Seo, Y. Choi, Y. J. Jang, S. H. Ahn, H. W. Jang, S. Back, J.-L. Lee, S. Y. Kim, Carbon Energy 2024.

[44]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115.

[45]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[46]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. B 1996, 77, 3865.

[47]

A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, J. Phys. Condens. Matter 2017, 29, 273002.

[48]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.

[49]

W. G. Hoover, Phys. Rev. A 1985, 31, 1695.

[50]

G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97, 2635.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/