Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes

Hyesun Yoo , Hoang Van Quy , Inpyo Lee , Seung Taek Jo , Tae Ei Hong , JunHo Kim , Dae-Hwang Yoo , Jinwook Shin , Walter Commerell , Dae-Hwan Kim , Jong Wook Roh

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12765

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12765 DOI: 10.1002/eem2.12765
RESEARCH ARTICLE

Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes

Author information +
History +
PDF

Abstract

The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se2 (CIGS) solar cells is systemically investigated. The Ag network electrode is deposited onto an Al:ZnO (AZO) thin film, employing a self-forming cracked template. Precise control over the cracked template’s structure is achieved through careful adjustment of temperature and humidity. The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells. It is revealed that predominant fill factor (FF) is influenced by the figure of merit of transparent conducting electrodes, rather than sheet resistance, particularly when the coverage area falls within the range of 1.3–5%. Furthermore, a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar. When utilizing a thinner AZO film, CIGS solar cells with a surface area of 1.0609 cm2 exhibit a notable performance improvement, with efficiency increasing from 10.48% to 11.63%. This enhancement is primarily attributed to the increase in FF from 45% to 65%. These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide (TCO) in CIGS modules with implications for practical applications in photovoltaic technology.

Keywords

CIGS / large-area solar cell / metal mesh / metallic network / transparent electrode

Cite this article

Download citation ▾
Hyesun Yoo, Hoang Van Quy, Inpyo Lee, Seung Taek Jo, Tae Ei Hong, JunHo Kim, Dae-Hwang Yoo, Jinwook Shin, Walter Commerell, Dae-Hwan Kim, Jong Wook Roh. Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes. Energy & Environmental Materials, 2024, 7(6): e12765 DOI:10.1002/eem2.12765

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. Bermudez, A. Perez-Rodriguez, Nat. Energy 2018, 3, 466.

[2]

A. Anand, M. M. Islam, R. Meitzner, U. S. Schubert, H. Hoppe, Adv. Energy Mater. 2021, 11, 2100875.

[3]

J. M. C. da Silva Filho, A. D. Goncalves, F. C. Marques, J. N. de Freitas, Sol. RRL 2022, 6, 2100865.

[4]

K. Gensowski, T. Freund, S. Tepner, F. Clement, Phys. Status Solidi Rapid Res. Lett. 2022, 16, 2200040.

[5]

J. van Deelen, C. Frijters, Sol. Energy 2017, 143, 93.

[6]

J. van Deelen, M. Barink, L. Klerk, P. Voorthuijzen, A. Hovestad, Prog. Photovolt. Res. Appl. 2015, 23, 498.

[7]

J. van Deelen, L. Klerk, M. Barink, Sol. Energy 2014, 107, 135.

[8]

D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.

[9]

B. Han, Q. Peng, R. Li, Q. Rong, Y. Ding, E. M. Akinoglu, X. Wu, X. Wang, X. Lu, Q. Wang, G. Zhou, J.-M. Liu, Z. Ren, M. Giersig, A. Herczynski, K. Kempa, J. Gao, Nat. Commun. 2016, 7, 12825.

[10]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, G. U. Kulkarni, J. Mater. Chem. C 2014, 2, 2089.

[11]

K. J. Prince, C. P. Muzzillo, M. Mirzokarimov, C. A. Wolden, L. M. Wheeler, ACS Appl. Energy Mater. 2022, 5, 9273.

[12]

K. S. Cho, S. Kang, Y.-J. Oh, J. S. Park, S. Lee, J.-S. Wi, J.-H. Park, S. Song, K. Kim, Y.-J. Eo, J. H. Yun, J. Gwak, J.-S. Cho, C.-H. Chung, ACS Appl. Electron. Mater. 2022, 4, 823.

[13]

A. Kurmar, G. U. Kulkarni, J. Appl. Phys. 2016, 119, 015102.

[14]

J. Gao, Z. Xian, G. Zhou, J.-M. Liu, K. Kempa, Adv. Funct. Mater. 2018, 28, 1705023.

[15]

Y. Han, Z. Hu, W. Zha, X. Chen, L. Yin, J. Guo, Z. Li, Q. Luo, W. Su, C.-Q. Ma, Adv. Mater. 2022, 34, 2110276.

[16]

Q. Peng, S. Li, B. Han, Q. Rong, X. Lu, Q. Wang, M. Zeng, G. Zhou, J.-M. Liu, K. Kempa, J. Gao, Adv. Mater. Technol. 2016, 1, 1600095.

[17]

B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, K. Kempa, Adv. Mater. 2014, 26, 873.

[18]

R. Gupta, K. D. M. Rao, S. Kiruthika, G. U. Kulkarni, ACS Appl. Mater. Interfaces 2016, 8, 12559.

[19]

C. P. Muzzillo, M. O. Reese, L. M. Mansfield, ACS Appl. Mater. Interfaces 2020, 12, 25895.

[20]

X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang, W. Su, Z. Cui, ACS Appl. Mater. Interfaces 2017, 9, 37048.

[21]

Z. Wang, B. Jiao, L. Huang, X. Zuo, W. Zhang, Y. Li, J. Wang, H. Dong, X. Hou, Z. Wu, ACS Appl. Mater. Interfaces 2021, 13, 41836.

[22]

V. Raman, Y.-H. Cho, H.-M. Kim, Y.-J. Kim, H.-M. Sim, H.-K. Kim, Ceram. Int. 2021, 47, 27230.

[23]

Y.-G. Kim, Y. J. Tak, H. J. Kim, W.-G. Kim, H. Yoo, H. J. Kim, Sci. Rep. 2018, 8, 5546.

[24]

Z. Zeng, C. Wang, J. Gau, J. Appl. Phys. 2020, 127, 065104.

[25]

Y. Yang, F. Min, Y. Qiao, Z. Li, F. Vogelbacher, Z. Liu, W. Lv, Y. Wang, Y. Song, Nano Energy 2021, 89, 106384.

[26]

C. P. Muzzillo, Adv. Energy Mater. 2022, 12, 2103119.

[27]

S. T. Jo, Master’s Thesis, Kyungpook National University Graduate School, 2024.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/