Effects of Rattling Behavior of K and Cd Atoms along Different Directions in Anisotropic KCdAs on Lattice Thermal Transport and Thermoelectric Properties

Yue Wang , Yinchang Zhao , Jun Ni , Zhenhong Dai

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12764

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12764 DOI: 10.1002/eem2.12764
RESEARCH ARTICLE

Effects of Rattling Behavior of K and Cd Atoms along Different Directions in Anisotropic KCdAs on Lattice Thermal Transport and Thermoelectric Properties

Author information +
History +
PDF

Abstract

We employ advanced first principles methodology, merging self-consistent phonon theory and the Boltzmann transport equation, to comprehensively explore the thermal transport and thermoelectric properties of KCdAs. Notably, the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes. Through various methodologies, including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes, the article unveils microphysical mechanisms contributing to the low κL within KCdAs. Key features include significant anisotropy in Cd atoms, pronounced anharmonicity in K atoms, and relative vibrations in non-equivalent As atomic layers. Cd atoms, situated between As layers, exhibit rattling modes and strong lattice anharmonicity, contributing to the observed low κL. Remarkably flat bands near the valence band maximum translate into high PF, aligning with ultralow κL for exceptional thermoelectric performance. Under optimal temperature and carrier concentration doping, outstanding ZT values are achieved: 4.25 (a(b)-axis, p-type, 3 × 1019 cm−3, 500 K), 0.90 (c-axis, p-type, 5 × 1020 cm−3, 700 K), 1.61 (a(b)-axis, n-type, 2 × 1018 cm−3, 700 K), and 3.06 (c-axis, n-type, 9 × 1017 cm−3, 700 K).

Keywords

anharmonic lattice dynamics / electron transport characteristics / first principles calculation / lattice thermal transport / octahedron / thermoelectric properties

Cite this article

Download citation ▾
Yue Wang, Yinchang Zhao, Jun Ni, Zhenhong Dai. Effects of Rattling Behavior of K and Cd Atoms along Different Directions in Anisotropic KCdAs on Lattice Thermal Transport and Thermoelectric Properties. Energy & Environmental Materials, 2024, 7(6): e12764 DOI:10.1002/eem2.12764

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. E. Bell, Science 2008, 321, 1457.

[2]

G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.

[3]

Y. Zhao, C. Lian, S. Zeng, Z. Dai, S. Meng, J. Ni, Phys. Rev. B 2020, 101, 184303.

[4]

J. Sootsman, D. Chung, M. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616.

[5]

M. Zebarjadi, K. Esfarjani, M. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2012, 5, 5147.

[6]

D. G. Cahill, S. K. Watson, R. O. Pohl, Phys. Rev. B 1992, 46, 6131.

[7]

D. T. Morelli, V. Jovovic, J. P. Heremans, Phys. Rev. Lett. 2008, 101, 35901.

[8]

G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, C. Uher, Phys. Rev. Lett. 1998, 80, 3551.

[9]

J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, G. A. Slack, Phys. Rev. Lett. 1999, 82, 779.

[10]

D. S. Parker, A. F. May, D. J. Singh, Phys. Rev. Appl. 2015, 3, 64003.

[11]

A. Li, C. Hu, B. He, M. Yao, C. Fu, Y. Wang, X. Zhao, C. Felser, T. Zhu, Nat. Commun. 2021, 12, 5408.

[12]

L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 1993, 47, 12727.

[13]

D. Parker, X. Chen, D. J. Singh, Phys. Rev. Lett. 2013, 110, 146601.

[14]

D. I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese, P. Ghosez, Phys. Rev. Lett. 2015, 114, 136601.

[15]

H. Wu, L.-D. Zhao, F. Zheng, D. Wu, Y. Pei, X. Tong, M. Kanatzidis, J. He, Nat. Commun. 2014, 5, 4515.

[16]

T. Tadano, Y. Gohda, S. Tsuneyuki, Phys. Rev. Lett. 2015, 114, 95501.

[17]

G. S. Nolas, J. Poon, M. Kanatzidis, MRS Bull. 2006, 31, 199.

[18]

G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen, Nat. Mater. 2004, 3, 458.

[19]

L. Bjerg, B. B. Iversen, G. K. H. Madsen, Phys. Rev. B 2014, 89, 24304.

[20]

X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher, Adv. Energy Mater. 2013, 3, 342.

[21]

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.

[22]

C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, O. Delaire, Nat. Phys. 2015, 11, 1063.

[23]

W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett. 2012, 108, 166601.

[24]

Y. Zhang, J.-H. Bahk, J. Lee, C. S. Birkel, M. L. Snedaker, D. Liu, H. Zeng, M. Moskovits, A. Shakouri, G. D. Stucky, Adv. Mater. 2014, 26, 2755.

[25]

H. Kahlert, H. Schuster, Z. Naturforsch. B 1976, 31, 1538.

[26]

G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nat. Commun. 2016, 7, 12167.

[27]

L.-C. Yin, W.-D. Liu, M. Li, Q. Sun, H. Gao, D.-Z. Wang, H. Wu, Y.-F. Wang, X.-L. Shi, Q. Liu, Z.-G. Chen, Adv. Energy Mater. 2021, 11, 2102913.

[28]

N. R. Werthamer, Phys. Rev. B 1970, 1, 572.

[29]

Y. Zhao, S. Zeng, G. Li, C. Lian, Z. Dai, S. Meng, J. Ni, Phys. Rev. B 2021, 104, 224304.

[30]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[31]

P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

[32]

T. Tadano, S. Tsuneyuki, Phys. Rev. B 2015, 92, 54301.

[33]

A. M. Ganose, J. Park, A. Faghaninia, R. WoodsRobinson, K. A. Persson, A. Jain, Nat. Commun. 2021, 12, 2222.

[34]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[35]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[36]

T. Tadano, Y. Gohda, S. Tsuneyuki, J. Phys. Condens. Matter 2014, 26, 225402.

[37]

S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 2001, 73, 515.

[38]

K. Esfarjani, H. T. Stokes, Phys. Rev. B 2008, 77, 144112.

[39]

F. Zhou, B. Sadigh, D. Aberg, Y. Xia, V. Ozoliņš, Phys. Rev. B 2019, 100, 184309.

[40]

T. Feng, L. Lindsay, X. Ruan, Phys. Rev. B 2017, 96, 161201.

[41]

T. Feng, X. Ruan, Phys. Rev. B 2016, 93, 45202.

[42]

A. J. H. McGaughey, M. Kaviany, Phys. Rev. B 2004, 69, 94303.

[43]

Z. Han, X. Yang, W. Li, T. Feng, X. Ruan, Comput. Phys. Commun. 2022, 270, 108179.

[44]

K. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653.

[45]

W. Chung, D. H. Buessem, J. Appl. Phys. 2004, 38, 2535.

[46]

A. Reuss, ZAMM Z. fur Angew. Math. Mech. 1929, 9, 49.

[47]

R. Hill, Proc. Phys. Soc. A 1952, 65, 349.

[48]

S. I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 2008, 101, 55504.

[49]

Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 2012, 33, 93.

[50]

P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 1998, 84, 4891.

[51]

W. Qiu, L. Wu, X. Ke, J. Yang, W. Zhang, Sci. Rep. 2015, 5.

[52]

R. Pela, M. Marques, L. Teles, J. Phys. Condens. Matter 2015, 27, 505502.

[53]

J. Gong, A. Hong, J. Shuai, L. Li, Z. Yan, Z. Ren, J.-M. Liu, Phys. Chem. Chem. Phys. 2016, 18, 16566.

[54]

Y.-L. Pei, Y. Liu, J. Alloys Compd. 2012, 514, 40.

[55]

H. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Adv. Mater. 2011, 23, 1366.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/