Ultrasensitive Indium Phosphide Nanomembrane Wearable Gas Sensors

Shiyu Wei , Tuomas Haggren , Zhe Li , Hark Hoe Tan , Chennupati Jagadish , Antonio Tricoli , Lan Fu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12763

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12763 DOI: 10.1002/eem2.12763
RESEARCH ARTICLE

Ultrasensitive Indium Phosphide Nanomembrane Wearable Gas Sensors

Author information +
History +
PDF

Abstract

Air quality is deteriorating due to continuing urbanization and industrialization. In particular, nitrogen dioxide (NO2) is a biologically and environmentally hazardous byproduct from fuel combustion that is ubiquitous in urban life. To address this issue, we report a high-performance flexible indium phosphide nanomembrane NO2 sensor for real-time air quality monitoring. An ultralow limit of detection of ∼200 ppt and a fast response have been achieved with this device by optimizing the film thickness and doping concentration during indium phosphide epitaxy. By varying the film thickness, a dynamic range of values for NO2 detection from parts per trillion (ppt) to parts per million (ppm) level have also been demonstrated under low bias voltage and at room temperature without additional light activation. Flexibility measurements show an adequately stable response after repeated bending. On-site testing of the sensor in a residential kitchen shows that NO2 concentration from the gas stove emission could exceed the NO2 Time Weighted Average limit, i.e., 200 ppb, highlighting the significance of real-time monitoring. Critically, the indium phosphide nanomembrane sensor element cost is estimated at <0.1 US$ due to the miniatured size, nanoscale thickness, and ease of fabrication. With these superior performance characteristics, low cost, and real-world applicability, our indium phosphide nanomembrane sensors offer a promising solution for a variety of air quality monitoring applications.

Keywords

air quality monitoring / flexible / III–V semiconductors / nanofilm / ultrathin

Cite this article

Download citation ▾
Shiyu Wei, Tuomas Haggren, Zhe Li, Hark Hoe Tan, Chennupati Jagadish, Antonio Tricoli, Lan Fu. Ultrasensitive Indium Phosphide Nanomembrane Wearable Gas Sensors. Energy & Environmental Materials, 2024, 7(6): e12763 DOI:10.1002/eem2.12763

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Saxena, P. Shukla, Environ. Prog. Sustain. Energy, 2023, 42, e14126.

[2]

W. U. Anake, E. A. Nnamani, Air Qual. Atmos. Health 2023, 16, 997.

[3]

R. C. Scholes, Environ. Sci. Process. 2022, 24, 851.

[4]

F. J. Kelly, J. C. Fussell, Clin. Exp. Allergy 2011, 41, 1059.

[5]

P. Achakulwisut, M. Brauer, P. Hystad, S. C. Anenberg, Lancet Planet. Health 2019, 3, e166.

[6]

H. Zhang, R. Srinivasan, Sustainability 2020, 12, 9045.

[7]

W. J. Gauderman, R. Urman, E. Avol, K. Berhane, R. McConnell, E. Rappaport, R. Chang, F. Lurmann, F. Gilliland, N. Engl. J. Med. 2015, 372, 905.

[8]

M. A. H. Khan, M. V. Rao, Q. L. Li, Sensors 2019, 19, 905.

[9]

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra, S. Bhansali, Chem. Rev. 2015, 115, 4571.

[10]

T. H. Yang, W. G. Chen, P. Y. Wang, Appl. Spectrosc. Rev. 2021, 56, 143.

[11]

K. Schmitt, K. R. Tarantik, C. Pannek, J. Wollenstein, Chemosensors 2018, 6, 14.

[12]

D. E. Williams, Curr. Opin. Electrochem. 2020, 22, 145.

[13]

S. Steinhauer, Chemosensors 2021, 9, 51.

[14]

S. W. Lee, W. Lee, Y. Hong, G. Lee, D. S. Yoon, Sens. Actuators B Chem. 2018, 255, 1788.

[15]

Y. Kim, S. Lee, J. G. Song, K. Y. Ko, W. J. Woo, S. W. Lee, M. Park, H. Lee, Z. Lee, H. Choi, W. H. Kim, J. Park, H. Kim, Adv. Funct. Mater. 2020, 30, 11.

[16]

H. Chen, M. Zhang, R. Bo, C. Barugkin, J. Zheng, Q. Ma, S. Huang, A. W. Y. Ho-Baillie, K. R. Catchpole, A. Tricoli, Small 2018, 14, 1702571.

[17]

D. J. Sun, Y. F. Luo, M. Debliquy, C. Zhang, Beilstein J. Nanotechnol. 2018, 9, 2832.

[18]

T. Hamada, M. Sugiyama, Jpn. J. Appl. Phys. 2022, 61, 054002.

[19]

X. L. Liu, Y. Zhao, W. J. Wang, S. X. Ma, X. J. Ning, L. Zhao, J. Zhuang, IEEE Sensors J. 2021, 21, 5628.

[20]

H. Tang, C. Gao, H. Yang, L. Sacco, R. Sokolovskij, H. Zheng, H. Ye, S. Vollebregt, H. Yu, X. Fan, 2D Mater. 2021, 8, 045006.

[21]

Z. Yuan, Q. Zhao, C. Xie, J. Liang, X. Duan, Z. Duan, S. Li, Y. Jiang, H. Tai, Sens. Actuators B Chem. 2022, 355, 131300.

[22]

E. Singh, M. Meyyappan, H. S. Nalwa, ACS Appl. Mater. Interfaces 2017, 9, 34544.

[23]

S. Y. Wei, Z. Li, A. John, B. I. Karawdeniya, Z. Y. Li, F. L. Zhang, K. Vora, H. H. Tan, C. Jagadish, K. Murugappan, A. Tricoli, L. Fu, Adv. Funct. Mater. 2022, 32, 2107596.

[24]

S. Wei, Z. Li, K. Murugappan, Z. Li, F. Zhang, A. G. Saraswathyvilasam, M. Lysevych, H. H. Tan, C. Jagadish, A. Tricoli, Adv. Mater. 2023, 35, 2207199.

[25]

M. R. Cavallari, L. M. Pastrana, C. D. F. Sosa, A. M. R. Marquina, J. E. E. Izquierdo, F. J. Fonseca, C. A. de Amorim, L. G. Paterno, I. Kymissis, Materials 2021, 14, 3.

[26]

C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, D. K. Sadana, Nat. Commun. 2013, 4, 1577.

[27]

T. Haggren, J. Tournet, C. Jagadish, H. H. Tan, J. Oksanen, ACS Appl. Mater. Interfaces 2023, 15, 1184.

[28]

G. Bauhuis, P. Mulder, J. Schermer, in High-Efficiency Solar Cells: Physics, Materials, and Devices (Eds: X. Wang, Z. Wang), Springer, Cham 2014, pp. 623–643.

[29]

A. Xukeer, Z. Wu, Q. Sun, F. Zhong, M. Zhang, M. Long, H. Duan, RSC Adv. 2020, 10, 30428.

[30]

M. A. Garcia, M. Losurdo, S. D. Wolter, W. V. Lampert, J. Bonaventura, G. Bruno, C. Yi, A. S. Brown, Sens. Lett. 2008, 6, 627.

[31]

T. Pham, G. Li, E. Bekyarova, M. E. Itkis, A. Mulchandani, ACS Nano 2019, 13, 3196.

[32]

V. Battut, J. P. Blanc, E. Goumet, V. Soulière, Y. Monteil, Thin Solid Films 1999, 348, 266.

[33]

S. D. Singh, V. K. Dixit, S. K. Khamari, R. Kumar, A. K. Srivastava, T. Ganguli, S. M. Oak, J. Appl. Phys. 2011, 109, 073702.

[34]

H. Qin, L. Xu, F. Zhan, Z. L. Wang, Nano Energy 2023, 116, 108762.

[35]

B. Cho, M. G. Hahm, M. Choi, J. Yoon, A. R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C. S. Kim, M. Song, Y. Jeong, K.-S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan, D.-H. Kim, Sci. Rep. 2015, 5, 8052.

[36]

A. Tricoli, S. E. Pratsinis, Nat. Nanotechnol. 2010, 5, 54.

[37]

M. Bai, H. Huang, Z. Liu, T. T. Zhan, S. F. Xia, X. G. Li, N. Sibirev, A. Bouravleuv, V. G. Dubrovskii, G. Cirlin, Appl. Surf. Sci. 2019, 498, 143756.

[38]

D. N. Zhao, H. Huang, S. J. Chen, Z. R. Li, S. D. Li, M. Y. Wang, H. C. Zhu, X. M. Chen, Nano Lett. 2019, 19, 3448.

[39]

W. Shin, G. Jung, S. Hong, Y. Jeong, J. Park, D. Kim, B. G. Park, J. H. Lee, Sens. Actuators B Chem. 2022, 357, 131398.

[40]

Y. T. Han, Y. Liu, C. Su, S. T. Wang, H. Li, M. Zeng, N. T. Hu, Y. J. Su, Z. H. Zhou, H. Wei, Z. Yang, Sens. Actuators B Chem. 2019, 296, 126666.

[41]

B. Shao, Y. Liu, X. Zhuang, S. Hou, S. Han, X. Yu, J. Yu, J. Mater. Chem. C 2019, 7, 10196.

[42]

J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao, Q. Y. Yang, Y. L. Wang, G. Y. Lu, Sens. Actuators B Chem. 2017, 249, 715.

[43]

E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu, J. Liu, D. Zhang, ACS Sens. 2018, 3, 1719.

[44]

P.-G. Su, J.-H. Yu, I. C. Chen, H.-C. Syu, S.-W. Chiu, T.-I. Chou, Anal. Methods 2019, 11, 973.

[45]

M. Reddeppa, N. T. KimPhung, G. Murali, K. S. Pasupuleti, B. G. Park, I. In, M. D. Kim, Sens. Actuators B Chem. 2021, 329, 129175.

[46]

H. Pan, G. Chen, Y. Chen, A. Di Carlo, M. A. Mayer, S. Shen, C. Chen, W. Li, S. Subramaniam, H. Huang, H. Tai, Y. Jiang, G. Xie, Y. Su, J. Chen, Biosens. Bioelectron. 2023, 222, 114999.

[47]

J. Huang, G. Xie, Q. Wei, Y. Su, X. Xu, Y. Jiang, ACS Appl. Mater. Interfaces 2023, 15, 5600.

[48]

J. Liu, S. Li, S. Zhou, Z. Chen, J. Xu, N. Cui, M. Yuan, B. Li, L. Gu, Nano Energy 2024, 122, 109310.

[49]

E. D. Lebel, C. J. Finnegan, Z. Ouyang, R. B. Jackson, Environ. Sci. Technol. 2022, 56, 2529.

[50]

L. Yang, J. Yan, C. Meng, A. Dutta, X. Chen, Y. Xue, G. Niu, Y. Wang, S. Du, P. Zhou, C. Zhang, S. Guo, H. Cheng, Adv. Mater. 2023, 35, 2210322.

[51]

R. Yang, W. Zhang, N. Tiwari, H. Yan, T. Li, H. Cheng, Adv. Sci. 2022, 9, 2202470.

[52]

J. S. Ward, T. Remo, K. Horowitz, M. Woodhouse, B. Sopori, K. VanSant, P. Basore, Prog. Photovolt. Res. Appl. 2016, 24, 1284.

[53]

J. Chen, C. E. Packard, Sol. Energy Mater. Sol. Cells 2021, 225, 111018.

[54]

J. H. Long, X. F. Li, Q. J. Sun, P. Dai, Y. Zhang, J. J. Xuan, F. X. Chen, M. H. Song, S. Y. Honda, S. R. O. Uchida, S. L. Lu, Sol. RRL 2021, 5, 2100066.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/