Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing

An Zhong , Congzhen Xie , Bin Gou , Jiangang Zhou , Huasong Xu , Song Yu , Daoming Zhang , Chunhui Bi , Hangchuan Cai , Licheng Li , Rui Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12762

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12762 DOI: 10.1002/eem2.12762
RESEARCH ARTICLE

Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing

Author information +
History +
PDF

Abstract

Epoxy resin, characterized by prominent mechanical and electric-insulation properties, is the preferred material for packaging power electronic devices. Unfortunately, the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge. Here, we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material. Different particle size of waste epoxy micro-spheres (100–600 µm) with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment. By using smattering epoxy monomer as an adhesive, an eco-friendly composite material with a “brick-wall structure” can be formed. The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m−1 K−1 at a low content of 8.5 vol% h-BN, superior to pure epoxy resin (0.21 W m−1 K−1). The composite, after secondary recycling and reuse, still maintains a thermal conductivity of 2.12 W m−1 K−1 and has mechanical and insulation properties comparable to the new epoxy resin (energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm−1). This strategy expands the sustainable application prospects of thermosetting polymers, offering extremely high economic and environmental value.

Keywords

brick-wall structure / epoxy thermosetting / physical recycling / thermal management

Cite this article

Download citation ▾
An Zhong, Congzhen Xie, Bin Gou, Jiangang Zhou, Huasong Xu, Song Yu, Daoming Zhang, Chunhui Bi, Hangchuan Cai, Licheng Li, Rui Wang. Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing. Energy & Environmental Materials, 2024, 7(6): e12762 DOI:10.1002/eem2.12762

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. W. Coates, Y. D. Y. L. Getzler, Nat. Rev. Mater. 2020, 5, 501.

[2]

M. Chanda, Adv. Ind. Eng. Polym. Res. 2021, 4, 133.

[3]

I. A. Ignatyev, W. Thielemans, B. Vander Beke, ChemSusChem 2014, 7, 1579.

[4]

A. Verma, L. Budiyal, M. R. Sanjay, S. Siengchin, Polym. Eng. Sci. 2019, 59, 2041.

[5]

A. Verma, K. Baurai, M. R. Sanjay, S. Siengchin, Polym. Compos. 2020, 41, 338.

[6]

F.-L. Jin, X. Li, S.-J. Park, J. Ind. Eng. Chem. 2015.

[7]

C. Soutis, Prog. Aerosp. Sci. 2005, 41, 143.

[8]

J. C. Capricho, B. Fox, N. Hameed, Polym. Rev. 2019.

[9]

Y. Wen, C. Chen, Y. Ye, Z. Xue, H. Liu, X. Zhou, Y. Zhang, D. Li, X. Xie, Y. W. Mai, Adv. Mater. 2022, 34, 2201023.

[10]

A. Lefeuvre, S. Garnier, L. Jacquemin, B. Pillain, G. Sonnemann, Resour. Conserv. Recycl. 2019, 141, 30.

[11]

Plastic -The Facts 2020, Plastics Europe 2020.

[12]

V. Tournier, C. M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya-Leclair, E. Kamionka, M. L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guémard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. André, S. Duquesne, A. Marty, Nature 2020, 580, 216.

[13]

R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782.

[14]

E. Topham, D. McMillan, S. Bradley, E. Hart, Energy Policy 2019, 129, 698.

[15]

J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou, P. Purnell, J. Hazard. Mater. 2018, 344, 179.

[16]

A. Rahimi, J. M. García, Nat. Rev. Chem. 2017, 1, 46.

[17]

H. Cheng, Y. Sun, X. Wang, J. Chang, D. Jing, Fibers Polym. 2019, 20, 760.

[18]

X. Kuang, Y. Zhou, Q. Shi, T. Wang, H. J. Qi, ACS Sustain. Chem. Eng. 2018, 6, 9189.

[19]

J.-H. Zhu, P.-Y. Chen, M.-N. Su, C. Pei, F. Xing, Green Chem. 2019, 21, 1635.

[20]

T. da Costa Dias, T. H. Panzera, J. C. dos Santos, R. Teixeira Santos Freire, C. Thomas, F. Scarpa, Mater. Today. Proc 2019, 8, 847.

[21]

A. Saccani, S. Manzi, I. Lancellotti, L. Lipparini, Constr. Build. Mater. 2019, 204, 296.

[22]

A. Yazdanbakhsh, L. C. Bank, K.-A. Rieder, Y. Tian, C. Chen, Resour. Conserv. Recycl. 2018, 128, 11.

[23]

F. Meng, E. A. Olivetti, Y. Zhao, J. C. Chang, S. J. Pickering, J. McKechnie, ACS Sustain. Chem. Eng. 2018, 6, 9854.

[24]

Y. Luna-Galiano, C. Leiva, R. Villegas, F. Arroyo, L. Vilches, C. Fernández-Pereira, Mater. Lett. 2018.

[25]

D. García, I. Vegas, I. Cacho, Constr. Build. Mater. 2014, 64, 293.

[26]

L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou, L. Jiang, J. Wang, Nano-Micro Lett. 2022, 14, 168.

[27]

Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang, Y.-W. Mai, X. Huang, Nano-Micro Lett. 2023, 15, 31.

[28]

H. Chen, Y. Ding, G. Zhu, Y. Liu, Q. Fang, X. Bai, Y. Zhao, X. Li, X. Huang, T.-Y. Zhang, B. Li, B. Sun, NPJ Flexible Electron. 2023, 7, 24.

[29]

B. Sunand, X. Huang, NPJ Flexible Electron. 2021, 5, 12.

[30]

Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang, Y.-W. Mai, X. Huang, Nano-Micro Lett. 2021, 13, 180.

[31]

Y. Su, Q. Ma, T. Liang, Y. Yao, Z. Jiao, M. Han, Y. Pang, L. Ren, X. Zeng, J. Xu, R. Sun, ACS Appl. Mater. Interfaces 2021, 13, 45050.

[32]

S. Yang, Z. Huang, Q. Hu, Y. Zhang, F. Wang, H. Wang, Y. Shu, ACS Appl. Electron. Mater. 2022, 4, 4659.

[33]

L. Yang, J. Guo, L. Zhang, C. Li, Ind. Eng. Chem. Res. 2022, 61, 8031.

[34]

Z. Su, H. Wang, J. He, Y. Guo, Q. Qu, X. Tian, ACS Appl. Mater. Interfaces 2018, 10, 36342.

[35]

W. Yan, X. Chen, J. S. K. Lim, H. Chen, V. Gill, A. Lambourne, X. Hu, Composites Part A 2022, 156, 106868.

[36]

K. Kim, M. Kim, J. Kim, Compos. Sci. Technol. 2014, 103, 72.

[37]

Z. Liu, J. Li, X. Liu, ACS Appl. Mater. Interfaces 2020, 12, 6503.

[38]

X. Cao, L. Ge, X. Yin, G. He, Surf. Interfaces 2022, 34, 102375.

[39]

H. Zhang, X. Zhang, K. Zheng, X. Tian, RSC Adv. 2021, 11, 22343.

[40]

X. Chen, J. S. K. Lim, W. Yan, F. Guo, Y. N. Liang, H. Chen, A. Lambourne, X. Hu, ACS Appl. Mater. Interfaces 2020, 12, 16987.

[41]

W. Jang, S. Lee, N. R. Kim, H. Koo, J. Yu, C.-M. Yang, Compos. Part B 2023, 248, 110355.

[42]

L. Zhao, L. Yan, C. Wei, Q. Li, X. Huang, Z. Wang, M. Fu, J. Ren, J. Phys. Chem. C 2020, 124, 12723.

[43]

Y. Zhu, X. Shen, D. Bao, Y. Shi, H. Huang, D. Zhao, H. Wang, J. Polym. Res. 2021, 28, 1.

[44]

Y. Jiang, X. Shi, Y. Feng, S. Li, X. Zhou, X. Xie, Compos. A: Appl. Sci. Manuf. 2018, 107, 657.

[45]

W. Sun Lee, J. Yu, Diam. Relat. Mater. 2005, 14, 1647.

[46]

Z. Lin, A. McNamara, Y. Liu, K.-S. Moon, C.-P. Wong, Compos. Sci. Technol. 2014, 90, 123.

[47]

X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C.-P. Wong, Small 2015, 11, 6205.

[48]

J. Chen, X. Huang, Y. Zhu, P. Jiang, Adv. Funct. Mater. 2017, 27, 1604754.

[49]

J. Gu, Q. Zhang, J. Dang, C. Xie, Polym. Adv. Technol. 2012, 23, 1025.

[50]

H. Jamshaid, R. Mishra, J. Militky, M. Pechociakova, M. T. Noman, Fibers Polym. 2016, 17, 1675.

[51]

I. M. Kalogeras, W. Brostow, J. Polym. Sci. B Polym. Phys. 2009, 47, 80.

[52]

S. C. Leguizamon, J. Ahn, S. Lee, B. H. Jones, Soft Matter 2022, 18, 4455.

[53]

K. C. Kao, Dielectric phenomena in solids with emphasis on physical concepts of electronic processes, Elsevier, London 2004.

[54]

G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov, S. Tang, K. Kodweis, J.-K. Lee, L. Zhu, Chem. Mater. 2016, 28, 4646.

[55]

Q. Wang, J. Che, W. Wu, Z. Hu, X. Liu, T. Ren, Y. Chen, J. Zhang, Polymers 2023, 15, 590.

[56]

M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, J. Chem. Phys. 2015, 142, 194703.

[57]

H. P. Palani Velayuda Shanmugasundram, E. Jayamani, K. H. Soon, Renew. Sust. Energ. Rev. 2022, 157, 112075.

[58]

B. Gou, C. Xie, H. Xu, R. Wang, J. Zhou, L. Li, Surf. Interfaces 2023, 36, 102465.

[59]

M. Awais, X. Chen, C. Dai, F. B. Meng, A. Paramane, Y. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1751.

[60]

ISO, INTERNATIONAL STANDARD, 2022, 22007–2:2022.

[61]

ASTM, INTERNATIONAL STANDARD, 2014, D3039/D3039M:2014.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/