Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools

Manpreet Kaur , Avinash Alagumalai , Omid Mahian , Sameh M. Osman , Tadaaki Nagao , Zhonglin Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12760

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12760 DOI: 10.1002/eem2.12760
RESEARCH ARTICLE

Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools

Author information +
History +
PDF

Abstract

Due to the push for carbon neutrality in various human activities, the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant. Also, the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents. To address this challenge, our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation. The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer. This occurrence bears resemblance to the natural water transpiration in plants, thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner. The generator module demonstrated in this study, measuring 12 × 6 cm2, exhibited a noteworthy open-circuit voltage of 0.35 V, coupled with a short-circuit current of 0.51 mA. Such low-cost ceramic wools are suitable for ubiquitous, permanent energy sources and hold potential for use as self-powered sensors and systems, eliminating the requirement for external energy sources such as sunlight or heat.

Keywords

ceramic microfibers / energy harvesting / power generation / self-powered systems / water evaporation

Cite this article

Download citation ▾
Manpreet Kaur, Avinash Alagumalai, Omid Mahian, Sameh M. Osman, Tadaaki Nagao, Zhonglin Wang. Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools. Energy & Environmental Materials, 2024, 7(6): e12760 DOI:10.1002/eem2.12760

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. J. Hovel, NASA STI/Recon Technical Report A, 1975, 76.

[2]

C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.

[3]

I. Katsouras, K. Asadi, M. Li, T. B. Van Driel, K. S. Kjaer, D. Zhao, T. Lenz, Y. Gu, P. W. Blom, D. Damjanovic, Nat. Mater. 2016, 15, 78.

[4]

Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z. L. Wang, Nat. Commun. 2016, 7, 10987.

[5]

C. F. Maduko, U. B. Akuru, ES4PG-2013 Conference Proceedings, Location of conference July 2013.

[6]

R. Newell, D. Raimi, G. Aldana, Resour. Futur. 2019, 1, 8.

[7]

A. M. Omer, Renew. Sust. Energ. Rev. 2008, 12, 1789.

[8]

C. Okkerse, H. Van Bekkum, Green Chem. 1999, 1, 107.

[9]

O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renew. Sust. Energ. Rev. 2014, 39, 748.

[10]

V. Slabov, S. Kopyl, M. P. Soares dos Santos, A. L. Kholkin, Nanomicro Lett. 2020.

[11]

K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo, Z. Zhang, Y. Yang, Nanomicro Lett. 2019.

[12]

J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng, C. Ye, Z. L. Wang, Nanomicro Lett. 2021.

[13]

Z. L. Wang, J. Song, Science 2006, 312, 242.

[14]

F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.

[15]

A. J. Williams, M. F. Torquato, I. M. Cameron, A. A. Fahmy, J. Sienz, IEEE Access 2021, 9, 77493.

[16]

J. Singh, R. Kaur, D. Singh, Int. J. Energy Res. 2021, 45, 118.

[17]

R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nat. Nanotechnol. 2009, 4, 34.

[18]

M. Grätzel, Nature 2001, 414, 338.

[19]

X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.

[20]

Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen, C. Pan, Z. Guo, X. Liu, Nanomicro Lett. 2021.

[21]

G. J. Snyder, E. S. Toberer, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (Ed: V. Dusastre), World Scientific, Singapore 2011, pp. 101–110.

[22]

Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, J. Phys. Chem. Lett. 2012, 3, 3599.

[23]

Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z.-H. Lin, Y. Su, P. Bai, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 9461.

[24]

Z. Liu, C. Liu, Z. Chen, H. Huang, Y. Liu, L. Xue, J. Sun, X. Wang, P. Xiong, J. Zhu, Exploration 2023, 3, 20220061.

[25]

L. Li, S. Feng, Y. Bai, X. Yang, M. Liu, M. Hao, S. Wang, Y. Wu, F. Sun, Z. Liu, Nat. Commun. 2022, 13, 1043.

[26]

R. Zhang, S. Wang, M. H. Yeh, C. Pan, L. Lin, R. Yu, Y. Zhang, L. Zheng, Z. Jiao, Z. L. Wang, Adv. Mater. 2015, 27, 6482.

[27]

J. Yin, J. Zhou, S. Fang, W. Guo, Joule 2020, 4, 1852.

[28]

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic, Nature 2016, 536, 197.

[29]

J. Osterle, Appl. Sci. Res. A 1964, 12, 425.

[30]

D. Burgreen, F. Nakache, J. Appl. Mech. 1965, 32, 675.

[31]

J. Yang, F. Lu, L. W. Kostiuk, D. Y. Kwok, J. Micromech. Microeng. 2003, 13, 963.

[32]

P. Král, M. Shapiro, Phys. Rev. Lett. 2001, 86, 131.

[33]

S. Ghosh, A. Sood, N. Kumar, Science 2003, 299, 1042.

[34]

J. Liu, L. Dai, J. W. Baur, J. Appl. Phys. 2007, 101, 064312.

[35]

P. Dhiman, F. Yavari, X. Mi, H. Gullapalli, Y. Shi, P. M. Ajayan, N. Koratkar, Nano Lett. 2011, 11, 3123.

[36]

W. Guo, C. Cheng, Y. Wu, Y. Jiang, J. Gao, D. Li, L. Jiang, Adv. Mater. 2013, 25, 6064.

[37]

G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, Nat. Nanotechnol. 2017, 12, 317.

[38]

T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, Adv. Funct. Mater. 2017, 27, 1700551.

[39]

F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Adv. Mater. 2015, 27, 4351.

[40]

F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Energy Environ. Sci. 2016, 9, 912.

[41]

Y. Lu, H. Wu, Q. Yang, J. Ping, J. Wu, J. Liu, Adv. Sustain. Syst. 2019, 3, 1900012.

[42]

X. Gao, T. Xu, C. Shao, Y. Han, B. Lu, Z. Zhang, L. Qu, J. Mater. Chem. A 2019, 7, 20574.

[43]

J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou, W. Guo, Nat. Nanotechnol. 2014, 9, 378.

[44]

J. Yin, Z. Zhang, X. Li, J. Yu, J. Zhou, Y. Chen, W. Guo, Nat. Commun. 2014, 5, 3582.

[45]

B. Ji, N. Chen, C. Shao, Q. Liu, J. Gao, T. Xu, H. Cheng, L. Qu, J. Mater. Chem. A 2019, 7, 6766.

[46]

M. Kaur, S. Ishii, S. L. Shinde, T. Nagao, ACS Sustain. Chem. Eng. 2017, 5, 8523.

[47]

Z. H. Lin, G. Cheng, S. Lee, K. C. Pradel, Z. L. Wang, Adv. Mater. 2014, 26, 4690.

[48]

Z. H. Lin, G. Cheng, L. Lin, S. Lee, Z. L. Wang, Angew. Chem. Int. Ed. 2013, 52, 12545.

[49]

S. Lin, X. Chen, Z. L. Wang, Chem. Rev. 2021, 122, 5209.

[50]

M. Kaur, S. Ishii, R. Nozaki, T. Nagao, Sci. Rep. 2021.

[51]

M. Kaur, T. Nagao, Energy Fuel 2022, 36, 11443.

[52]

Z. L. Wang, Adv. Mater. 2012, 24, 280.

[53]

M. R. Das, J. M. Borah, W. Kunz, B. W. Ninham, S. Mahiuddin, J. Colloid Interface Sci. 2010, 344, 482.

[54]

F. H. van der Heyden, D. Stein, C. Dekker, Phys. Rev. Lett. 2005, 95, 116104.

[55]

F. H. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Nano Lett. 2007, 7, 1022.

[56]

H.-C. Ho, K. Chen, T. Nagao, C.-H. Hsueh, J. Phys. Chem. C 2019, 123, 21103.

[57]

O. Saber, H. M. Gobara, Egypt. J. Pet. 2014, 23, 445.

[58]

L.-B. Huang, W. Xu, C. Zhao, Y.-L. Zhang, K.-L. Yung, D. Diao, K. H. Fung, J. Hao, ACS Appl. Mater. Interfaces 2020, 12, 24030.

[59]

M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. M. Mastronardi, A. Qualtieri, M. De Vittorio, Energies 2020, 13, 1625.

[60]

A. Bard, Standard Potentials in Aqueous Solution, Routledge, New York, NY, October 2017.

[61]

Z. Lin, Z. Yang, Droplet 2024, 3, e97.

[62]

W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R. X. Xu, Nature 2020, 578, 392.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/