High-Safety Anode Materials for Advanced Lithium-Ion Batteries

Kai Yuan , Yu Lin , Xiang Li , Yufeng Ding , Peng Yu , Jian Peng , Jiazhao Wang , HuaKun Liu , Shixue Dou

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12759

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12759 DOI: 10.1002/eem2.12759
REVIEW

High-Safety Anode Materials for Advanced Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries (LIBs) play a pivotal role in today’s society, with widespread applications in portable electronics, electric vehicles, and smart grids. Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness. Graphite anodes face challenges, however, in extreme safety-demanding situations, such as airplanes and passenger ships. The lithiation of graphite can potentially form lithium dendrites at low temperatures, causing short circuits. Additionally, the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte, initiating thermal runaway. This review introduces two promising high-safety anode materials, Li4Ti5O12 and TiNb2O7. Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte, resulting in reduced heat generation and significantly lower probabilities of thermal runaway. Li4Ti5O12 and TiNb2O7 offer enhanced safety characteristics compared to graphite, making them suitable for applications with stringent safety requirements. This review provides a comprehensive overview of Li4Ti5O12 and TiNb2O7, focusing on their material properties and practical applicability. It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs, addressing the challenges and opportunities associated with their implementation in real-world applications.

Keywords

anodes / electrode materials / lithium-ion batteries / thermal runaway

Cite this article

Download citation ▾
Kai Yuan, Yu Lin, Xiang Li, Yufeng Ding, Peng Yu, Jian Peng, Jiazhao Wang, HuaKun Liu, Shixue Dou. High-Safety Anode Materials for Advanced Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12759 DOI:10.1002/eem2.12759

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

[2]

Nobel Prize Outreach, The Nobel Prize in Chemistry 2019, https://www.nobelprize.org/prizes/chemistry/2019/summary/(accessed: July 2023).

[3]

P. Sun, R. Bisschop, H. Niu, X. Huang, Fire. Technol 2020, 56, 1361.

[4]

P. Victor Chombo, Y. Laoonual, S. Wongwises, Energies 2021, 14, 4802.

[5]

L. Bravo Diaz, X. He, Z. Hu, F. Restuccia, M. Marinescu, J. V. Barreras, Y. Patel, G. Offer, G. Rein, J. Electrochem. Soc. 2020, 167, 90559.

[6]

P. F. Lyons, N. S. Wade, T. Jiang, P. C. Taylor, F. Hashiesh, M. Michel, D. Miller, Appl. Energy 2015, 137, 677.

[7]

W. Hu, How E-Bike Battery Fires Became a Deadly Crisis in New York City, https://www.nytimes.com/2023/06/21/nyregion/e-bike-lithium-battery-fires-nyc.html (accessed: July 2023).

[8]

B. Carey, FDNY: Lithium-Ion Battery Fire Fatalities in 2023 will Likely Surpass Last 2 Years Combined, https://www.firerescue1.com/lithium-ion-battery-fires/articles/fdny-lithium-ion-battery-fire-fatalities-in-2023-will-likely-surpass-last-2-years-combined-Vzg1OAj79Ob061j9/(accessed: July 2023).

[9]

X. Feng, D. Ren, X. He, M. Ouyang, Joule 2020, 4, 743.

[10]

N. Chawla, N. Bharti, S. Singh, Batteries 2019, 5, 19.

[11]

C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. von Cresce, M. S. Ding, O. Borodin, J. Vatamanu, M. A. Schroeder, N. Eidson, C. Wang, K. Xu, Joule 2017, 1, 122.

[12]

Z. Zeng, V. Murugesan, K. S. Han, X. Jiang, Y. Cao, L. Xiao, X. Ai, H. Yang, J. Zhang, M. L. Sushko, J. Liu, Nat. Energy 2018, 3, 674.

[13]

Z. Liao, S. Zhang, K. Li, G. Zhang, T. G. Habetler, J. Power Sources 2019, 436, 226879.

[14]

L. Zhang, K. Jin, J. Sun, Q. Wang, Fire. Technol 2022,

[15]

J. M. Kolly, J. Panagiotou, B. A. Czech, The Investigation of a Lithium-Ion Battery Fire On board a Boeing 787 by the US National Transportation Safety Board, Safety Research Corporation of America, Dothan, AL 2013, p. 1.

[16]

Corvus Energy, Fire Onboard the Car-Ferry Ytterøyningen: Preliminary Investigation Results, https://web.archive.org/web/20210116215235/https://corvusenergy.com/fire-onboard-the-car-ferry-ytteroyningen-preliminary-investigation-results/(accessed: March 2023).

[17]

X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Energy Storage Mater. 2018, 10, 246.

[18]

A. Jana, D. R. Ely, R. E. García, J. Power Sources 2015, 275, 912.

[19]

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources 2012, 208, 210.

[20]

X. Feng, S. Zheng, D. Ren, X. He, L. Wang, H. Cui, X. Liu, C. Jin, F. Zhang, C. Xu, H. Hsu, S. Gao, T. Chen, Y. Li, T. Wang, H. Wang, M. Li, M. Ouyang, Appl. Energy 2019, 246, 53.

[21]

X. Feng, S. Zheng, X. He, L. Wang, Y. Wang, D. Ren, M. Ouyang, Front. Energy Res. 2018, 6, 126.

[22]

X. Liu, D. Ren, H. Hsu, X. Feng, G. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, J. Li, X. He, K. Amine, M. Ouyang, Joule 2018, 2, 2047.

[23]

Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu, X. Han, ACS Appl. Mater. Interfaces 2019, 11, 46839.

[24]

X. Feng, X. He, M. Ouyang, L. Wang, L. Lu, D. Ren, S. Santhanagopalan, J. Electrochem. Soc. 2018, 165, A3748.

[25]

K. M. Colbow, J. R. Dahn, R. R. Haering, J. Power Sources 1989, 26, 397.

[26]

A. Deschanvres, B. Raveau, Z. Sekkal, Mater. Res. Bull. 1971, 6, 699.

[27]

B. Zhao, R. Ran, M. L. Liu, Z. P. Shao, Mater. Sci. Eng. R. Rep. 2015,

[28]

T. F. Yi, S. Y. Yang, Y. Xie, J. Mater. Chem. A 2015, 3, 5750.

[29]

P. Tsai, W. Hsu, S. Lin, J. Electrochem. Soc. 2014, 161, A439.

[30]

M. Vijayakumar, S. Kerisit, K. M. Rosso, S. D. Burton, J. A. Sears, Z. Yang, G. L. Graff, J. Liu, J. Hu, J. Power Sources 2011, 196, 2211.

[31]

T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 1995, 142, 1431.

[32]

S. Scharner, W. Weppner, P. Schmid Beurmann, J. Electrochem. Soc. 1999, 146, 857.

[33]

Y. C. Chen, C. Y. Ouyang, L. J. Song, Z. L. Sun, Electrochim. Acta 2011, 56, 6084.

[34]

S. Han, J. H. Ryu, J. Jeong, D. Yoon, J. Alloys Compd. 2013, 570, 144.

[35]

M. Michalska, M. Krajewski, D. Ziolkowska, B. Hamankiewicz, M. Andrzejczuk, L. Lipinska, K. P. Korona, A. Czerwinski, Powder Technol. 2014, 266, 372.

[36]

X. Guo, H. F. Xiang, T. P. Zhou, W. H. Li, X. W. Wang, J. X. Zhou, Y. Yu, Electrochim. Acta 2013, 109, 33.

[37]

J. Li, Z. Tang, Z. Zhang, Electrochem. Commun. 2005, 7, 894.

[38]

L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, Y. Xia, J. Mater. Chem. 2010, 20, 6998.

[39]

B. Li, C. Han, Y. He, C. Yang, H. Du, Q. Yang, F. Kang, Energy Environ. Sci. 2012, 5, 9595.

[40]

L. Kavan, M. Grätzel, Electrochem. Solid-State Lett. 2002, 5, A39.

[41]

C. Jiang, M. Ichihara, I. Honma, H. Zhou, Electrochim. Acta 2007, 52, 6470.

[42]

J. Huang, Z. Jiang, Electrochim. Acta 2008, 53, 7756.

[43]

K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, J. Power Sources 2010, 195, 6250.

[44]

S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, Energy Environ. Sci. 2014, 7, 1924

[45]

C. Wu, Y. Wang, G. Ma, X. Zheng, Electrochem. Commun. 2021, 131, 107119.

[46]

S. Chou, J. Wang, H. Liu, S. Dou, J. Phys. Chem. C 2011, 115, 16220.

[47]

J. Li, Y. Jin, X. Zhang, H. Yang, Solid State Ionics 2007, 178, 1590.

[48]

L. Cheng, H. Liu, J. Zhang, H. Xiong, Y. Xia, J. Electrochem. Soc. 2006, 153, A1472.

[49]

Y. Bai, F. Wang, F. Wu, C. Wu, L. Bao, Electrochim. Acta 2008, 54, 322.

[50]

M. M. Rahman, J. Wang, M. F. Hassan, S. Chou, D. Wexler, H. Liu, J. Power Sources 2010, 195, 4297.

[51]

I. Belharouak, G. M. Koenig, T. Tan, H. Yumoto, N. Ota, K. Amine, J. Electrochem. Soc. 2012, 159, A1165.

[52]

Y. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q. Yang, J. Kim, F. Kang, Sci. Rep. 2012, 2, 913.

[53]

W. Lv, J. Gu, Y. Niu, K. Wen, W. He, J. Electrochem. Soc. 2017, 164, A2213.

[54]

J. Wang, X. Sun, Energy Environ. Sci. 2012, 5, 5163.

[55]

T. Yuan, X. Yu, R. Cai, Y. Zhou, Z. Shao, J. Power Sources 2010, 195, 4997.

[56]

G. Zhu, H. Liu, J. Zhuang, C. Wang, Y. Wang, Y. Xia, Energy Environ. Sci. 2011, 4, 4016.

[57]

L. Cheng, X. Li, H. Liu, H. Xiong, P. Zhang, Y. Xia, J. Electrochem. Soc. 2007, 154, A692.

[58]

H. Jung, S. Myung, C. S. Yoon, S. Son, K. H. Oh, K. Amine, B. Scrosati, Y. Sun, Energy Environ. Sci. 2011, 4, 1345.

[59]

M. M. Rahman, J. Wang, M. F. Hassan, D. Wexler, H. K. Liu, Adv. Energy Mater. 2011, 1, 212.

[60]

Y. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, H. Zhou, J. Mater. Chem. 2009, 19, 6789.

[61]

E. Kang, Y. S. Jung, G. Kim, J. Chun, U. Wiesner, A. C. Dillon, J. K. Kim, J. Lee, Adv. Funct. Mater. 2011, 21, 4349.

[62]

Z. Zhu, F. Cheng, J. Chen, J. Mater. Chem. A 2013, 1, 9484.

[63]

L. Zhao, Y. Hu, H. Li, Z. Wang, L. Chen, Adv. Mater. 2011, 23, 1385.

[64]

S. Huang, Z. Wen, J. Zhang, Z. Gu, X. Xu, Solid State Ionics 2006, 177, 851.

[65]

S. Huang, Z. Wen, B. Lin, J. Han, X. Xu, J. Alloys Compd. 2008, 457, 400.

[66]

C. Hsieh, B. Chang, J. Lin, R. Juang, J. Alloys Compd. 2012, 513, 393.

[67]

W. Wang, Y. Guo, L. Liu, S. Wang, X. Yang, H. Guo, J. Power Sources 2014, 245, 624.

[68]

Y. Wang, L. Gu, Y. Guo, H. Li, X. He, S. Tsukimoto, Y. Ikuhara, L. Wan, J. Am. Chem. Soc. 2012, 134, 7874.

[69]

M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. Dicarlo, C. P. Tripp, W. J. Desisto, J. Power Sources 2007, 165, 379.

[70]

X. Wang, L. Shen, H. Li, J. Wang, H. Dou, X. Zhang, Electrochim. Acta 2014, 129, 283.

[71]

J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, C. Sun, H. Zhao, S. Zhang, J. Mater. Chem. A 2014, 2, 6353.

[72]

K. Park, A. Benayad, D. Kang, S. Doo, J. Am. Chem. Soc. 2008, 130, 14930.

[73]

B. Yan, M. Li, X. Li, Z. Bai, J. Yang, D. Xiong, D. Li, J. Mater. Chem. A 2015, 3, 11773.

[74]

C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, M. M. Thackeray, J. Electrochem. Soc. 2001, 148, A102.

[75]

S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, Z. Tang, Mater. Chem. Phys. 2010, 123, 510.

[76]

Y. Ma, B. Ding, G. Ji, J. Y. Lee, ACS Nano 2013, 7, 10870.

[77]

Q. Zhang, H. Lu, H. Zhong, X. Yan, C. Ouyang, L. Zhang, J. Mater. Chem. A 2015, 3, 13706.

[78]

T. Yi, J. Shu, Y. Zhu, X. Zhu, C. Yue, A. Zhou, R. Zhu, Electrochim. Acta 2009, 54, 7464.

[79]

J. Wolfenstine, J. L. Allen, J. Power Sources 2008, 180, 582.

[80]

B. Tian, H. Xiang, L. Zhang, Z. Li, H. Wang, Electrochim. Acta 2010, 55, 5453.

[81]

Q. Zhang, C. Zhang, B. Li, D. Jiang, S. Kang, X. Li, Y. Wang, Electrochim. Acta 2013, 107, 139.

[82]

J. L. Allen, T. R. Jow, J. Wolfenstine, J. Power Sources 2006, 159, 1340.

[83]

C. Wang, S. Wang, L. Tang, Y. He, L. Gan, J. Li, H. Du, B. Li, Z. Lin, F. Kang, Nano Energy 2016, 21, 133.

[84]

L. Shen, E. Uchaker, X. Zhang, G. Cao, Adv. Mater. 2012, 24, 6502.

[85]

S. C. Lee, S. M. Lee, J. W. Lee, J. B. Lee, S. M. Lee, S. S. Han, H. C. Lee, H. J. Kim, J. Phys. Chem. C 2009, 113, 18420.

[86]

L. Yu, H. B. Wu, X. W. D. Lou, Adv. Mater. 2013, 25, 2296.

[87]

A. Kuhn, C. Baehtz, F. García-Alvarado, J. Power Sources 2007, 174, 421.

[88]

H. X. Geng, A. F. Dong, G. C. Che, W. W. Huang, S. L. Jia, Z. X. Zhao, Physica C Supercond. 2005, 432, 53.

[89]

J. Yang, J. Zhao, Y. Chen, Y. Li, Ionics 2010, 16, 425.

[90]

G. Yang, J. Yang, L. Zhang, RSC Adv. 2015, 5, 97720.

[91]

M. Manickam, M. Takata, J. Power Sources 2003, 114, 298.

[92]

L. Persi, F. Croce, B. Scrosati, Electrochem. Commun. 2002, 4, 92.

[93]

K. Jiang, X. H. Hu, H. J. Sun, D. H. Wang, X. B. Jin, Y. Y. Ren, G. Z. Chen, Chem. Mater. 2004, 16, 4324.

[94]

D. Fattakhova, V. Petrykin, J. Brus, T. Kostlánová J. Dědeček, P. Krtil, Solid State Ionics 2005, 176, 1877.

[95]

K. J. Griffith, Y. Harada, S. Egusa, R. M. Ribas, R. S. Monteiro, R. B. Von Dreele, A. K. Cheetham, R. J. Cava, C. P. Grey, J. B. Goodenough, Chem. Mater. 2021, 33, 4.

[96]

R. S. Roth, L. W. Coughanour, J. Res. Natl. Stand. Technol. 1955, 55, 209.

[97]

A. D. Wadsley, Acta Crystallogr. 1961, 14, 664.

[98]

R. S. Roth, A. D. Wadsley, Acta Crystallogr. 1965, 18, 724.

[99]

A. D. Wadsley, Acta Crystallogr. 1961, 14, 660.

[100]

R. B. V Dreele, A. K. Cheetham, J. S. Anderson, Proc. Math. Phys. Eng. Sci. P. Roy. Soc. A-Math. Phy. 1997, 338, 311.

[101]

K. J. Griffith, A. Senyshyn, C. P. Grey, Inorg. Chem. 2017, 56, 4002.

[102]

C. Lin, G. Wang, S. Lin, J. Li, L. Lu, Chem. Commun. 2015, 51, 8970.

[103]

R. J. Cava, D. W. Murphy, S. M. Zahurak, J. Electrochem. Soc. 1983, 130, 2345.

[104]

J. Han, Y. Huang, J. B. Goodenough, Chem. Mater. 2011, 23, 2027.

[105]

M. Gasperin, J. Solid State Chem. 1984, 53, 144.

[106]

N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi, K. Hoshina, J. Power Sources 2018, 396, 429.

[107]

X. Lu, Z. Jian, Z. Fang, L. Gu, Y. Hu, W. Chen, Z. Wang, L. Chen, Energy Environ. Sci. 2011, 4, 2638.

[108]

B. Guo, X. Yu, X. Sun, M. Chi, Z. Qiao, J. Liu, Y. Hu, X. Yang, J. B. Goodenough, S. Dai, Energy Environ. Sci. 2014, 7, 2220.

[109]

K. Ise, S. Morimoto, Y. Harada, N. Takami, Solid State Ionics 2018, 320, 7.

[110]

S. Lou, Y. Ma, X. Cheng, J. Gao, Y. Gao, P. Zuo, C. Du, G. Yin, Chem. Commun. 2015, 51, 17293.

[111]

K. Tang, X. Mu, P. A. van Aken, Y. Yu, J. Maier, Adv. Energy Mater. 2013, 3, 49.

[112]

S. H. Choi, T. S. Kim, B. Ali, K. S. Choi, S. K. Hyun, J. J. Sim, W. J. Choi, W. Joo, J. H. Lim, T. H. Lee, Arch. Metall. Mater. 2017, 62, 1051.

[113]

H. Li, L. Shen, J. Wang, S. Fang, Y. Zhang, H. Dou, X. Zhang, J. Mater. Chem. A 2015, 3, 16785.

[114]

H. Song, Y. Kim, Chem. Commun. 2015, 51, 9849.

[115]

S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, Y. Ma, C. Du, G. Yin, X. Sun, Nano Energy 2017, 34, 15.

[116]

R. Tao, G. Yang, E. C. Self, J. Liang, J. R. Dunlap, S. Men, C. Do-Thanh, J. Liu, Y. Zhang, S. Zhao, H. Lyu, A. P. Sokolov, J. Nanda, X. Sun, S. Dai, Small 2020, 16, 2001884.

[117]

C. Lu, K. Li, S. Balaji, P. S. Kumar, Ceram. Int. 2021, 47, 18619.

[118]

L. Fei, Y. Xu, X. Wu, Y. Li, P. Xie, S. Deng, S. Smirnov, H. Luo, Nanoscale 2013, 5, 11102.

[119]

V. Aravindan, J. Sundaramurthy, A. Jain, P. S. Kumar, W. C. Ling, S. Ramakrishna, M. P. Srinivasan, S. Madhavi, ChemSusChem 2014, 7, 1858.

[120]

S. Jayaraman, V. Aravindan, P. Suresh Kumar, W. Chui Ling, S. Ramakrishna, S. Madhavi, ACS Appl. Mater. Interfaces 2014, 6, 8660.

[121]

X. Wang, G. Shen, Nano Energy 2015, 15, 104.

[122]

H. Park, T. Song, U. Paik, J. Mater. Chem. A 2015, 3, 8590.

[123]

D. Pham-Cong, J. H. Choi, J. Yun, A. S. Bandarenka, J. Kim, P. V. Braun, S. Y. Jeong, C. R. Cho, ACS Nano 2017, 11, 1026.

[124]

H. Park, D. H. Shin, T. Song, W. I. Park, U. Paik, J. Mater. Chem. A 2017, 5, 6958.

[125]

H. Yu, H. Lan, L. Yan, S. Qian, X. Cheng, H. Zhu, N. Long, M. Shui, J. Shu, Nano Energy 2017, 38, 109.

[126]

Q. Cheng, J. Liang, N. Lin, C. Guo, Y. Zhu, Y. Qian, Electrochim. Acta 2015, 176, 456.

[127]

H. Park, H. B. Wu, T. Song, X. W. David Lou, U. Paik, Adv. Energy Mater. 2015, 5, 1401945.

[128]

H. Li, L. Shen, G. Pang, S. Fang, H. Luo, K. Yang, X. Zhang, Nanoscale 2015, 7, 619.

[129]

H. Noh, W. Choi, J. Electrochem. Soc. 2016, 163, A1042.

[130]

S. Yoon, S. Lee, T. L. Nguyen, I. T. Kim, S. Woo, K. Y. Cho, J. Alloys Compd. 2018, 731, 437.

[131]

G. Zhu, Q. Li, R. Che, Chem. Eur. J. 2018, 24, 12932.

[132]

G. Liu, L. Zhao, R. Sun, W. Chen, M. Hu, M. Liu, X. Duan, T. Zhang, Electrochim. Acta 2018, 259, 20.

[133]

C. Jo, Y. Kim, J. Hwang, J. Shim, J. Chun, J. Lee, Chem. Mater. 2014, 26, 3508.

[134]

R. Inada, T. Mori, R. Kumasaka, R. Ito, T. Tojo, Y. Sakurai, Int. J. Appl. Ceram. Technol. 2019, 16, 264.

[135]

K. Liu, J. Wang, J. Yang, D. Zhao, P. Chen, J. Man, X. Yu, Z. Wen, J. Sun, Chem. Eng. J. 2021, 407, 127190.

[136]

C. Lin, S. Yu, S. Wu, S. Lin, Z. Zhu, J. Li, L. Lu, J. Mater. Chem. A 2015, 3, 8627.

[137]

C. Yang, C. Lin, S. Lin, Y. Chen, J. Li, J. Power Sources 2016, 328, 336.

[138]

X. Wu, J. Miao, W. Han, Y. Hu, D. Chen, J. Lee, J. Kim, L. Chen, Electrochem. Commun. 2012, 25, 39.

[139]

T. Takashima, T. Tojo, R. Inada, Y. Sakurai, J. Power Sources 2015, 276, 113.

[140]

C. Yang, S. Yu, Y. Ma, C. Lin, Z. Xu, H. Zhao, S. Wu, P. Zheng, Z. Zhu, J. Li, N. Wang, J. Power Sources 2017, 360, 470.

[141]

X. Xia, S. Deng, S. Feng, J. Wu, J. Tu, J. Mater. Chem. A 2017, 5, 21134.

[142]

S. Deng, D. Chao, Y. Zhong, Y. Zeng, Z. Yao, J. Zhan, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Energy Storage Mater. 2018, 12, 137.

[143]

S. Lou, X. Cheng, J. Gao, Q. Li, L. Wang, Y. Cao, Y. Ma, P. Zuo, Y. Gao, C. Du, H. Huo, G. Yin, Energy Storage Mater. 2018, 11, 57.

[144]

S. Deng, Y. Zhang, D. Xie, L. Yang, G. Wang, X. Zheng, J. Zhu, X. Wang, Y. Yu, G. Pan, X. Xia, J. Tu, Nano Energy 2019, 58, 355.

[145]

W. Mao, K. Bao, L. Wang, G. Liu, H. Xie, R. Zhang, S. Zheng, J. Guo, B. Li, W. Wang, Ceram. Int. 2016, 42, 16935.

[146]

R. Sun, G. Liu, S. Cao, B. Dong, X. Liu, M. Hu, M. Liu, X. Duan, Dalton Trans. 2017, 46, 17061.

[147]

Y. Lee, K. Ryu, Sci. Rep. 2017, 7, 16617.

[148]

X. Liu, G. Liu, M. Liu, M. Hu, Y. Hu, J. Ma, J. Alloys Compd. 2019, 787, 344.

[149]

C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen, J. Li, H. Wu, Nanoscale 2016, 8, 18792.

[150]

H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, J. Zhang, M. Shui, Y. Xie, J. Shu, Nano Energy 2018, 54, 227.

[151]

T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin, M. Liu, Adv. Sci. 2022, 9, 2105119.

[152]

L. Hu, L. Luo, L. Tang, C. Lin, R. Li, Y. Chen, J. Mater. Chem. A 2018, 6, 9799.

[153]

K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C. M. Julien, J. Power Sources 2011, 196, 3949.

[154]

N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, K. Hoshina, J. Electrochem. Soc. 2009, 156, A128.

[155]

D. Graham-Rowe, Charge a Battery in Just Six Minutes, https://www.newscientist.com/article/dn7081-charge-a-battery-in-just-six-minutes/(accessed: July 2023).

[156]

Toshiba Corporation, SCiB Rechargeable Battery | Toshiba, https://www.global.toshiba/ww/products-solutions/battery/scib.html (accessed: July 2023).

[157]

Verband der Elektrotechnik, Battery Systems for Multiple Units: Emission-Free Drives Powered by Lithium-Ion Cells, https://www.vde.com/resource/blob/2068324/a35ebed9833dae59d8cb1451368203bd/vde-study-battery-systems-data.pdf (accessed: July 2023).

[158]

Toshiba Corporation, Toshiba Develops New Lithium-Ion Battery with Cobalt-Free 5V Class High-Potential Cathode, https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/23/2311-02.html (accessed: July 2023).

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/