Lithium-Metal-Free Sulfur Batteries with Biochar and Steam-Activated Biochar-Based Anodes from Spent Common Ivy

Pejman Salimi , Willem Vercruysse , Susana Chauque , Saeed Yari , Eleonora Venezia , Amine Lataf , Nahal Ghanemnia , Muhammad Shajih Zafar , Mohammadhosein Safari , An Hardy , Remo Proietti Zaccaria , Dries Vandamme

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12758

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12758 DOI: 10.1002/eem2.12758
RESEARCH ARTICLE

Lithium-Metal-Free Sulfur Batteries with Biochar and Steam-Activated Biochar-Based Anodes from Spent Common Ivy

Author information +
History +
PDF

Abstract

Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries. The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode. In this research, a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite, replacing them with biomass-derived materials. This approach presents numerous benefits, encompassing ample availability, cost-effectiveness, safety, and environmental friendliness. In particular, two types of biochar-based anode electrodes (non-activated and activated biochar) derived from spent common ivy have been investigated as alternatives to metallic lithium. We compared their structural and electrochemical properties, both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries. Surprisingly, while steam activation results in an increased specific surface area, the non-activated ivy biochar demonstrates better performance than the activated biochar, achieving a stable capacity of 400 mA h g−1 at 0.1 A g−1 and a long lifespan (>400 cycles at 0.5 A g−1). Our results demonstrate that the presence of heteroatoms, such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes. This led to increased d-spacing in the graphitic layer, a strong interaction with the solid electrolyte interphase layer, and improved ion transportation. Finally, the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries, delivering a specific energy density of ∼600 Wh kg−1.

Keywords

activated biochar / biochar / electrochemical performance / functional groups / lithium-metal-free sulfur batteries

Cite this article

Download citation ▾
Pejman Salimi, Willem Vercruysse, Susana Chauque, Saeed Yari, Eleonora Venezia, Amine Lataf, Nahal Ghanemnia, Muhammad Shajih Zafar, Mohammadhosein Safari, An Hardy, Remo Proietti Zaccaria, Dries Vandamme. Lithium-Metal-Free Sulfur Batteries with Biochar and Steam-Activated Biochar-Based Anodes from Spent Common Ivy. Energy & Environmental Materials, 2024, 7(6): e12758 DOI:10.1002/eem2.12758

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Tong, D. J. Farnham, L. Duan, Q. Zhang, N. S. Lewis, K. Caldeira, S. J. Davis, Nat. Commun. 2021.

[2]

S. Javadian, P. Salimi, H. Gharibi, A. Fathollahi, E. Kowsari, J. Kakemam, J. Iran. Chem. Soc. 2019, 16, 2123.

[3]

A. Masias, J. Marcicki, W. A. Paxton, ACS Energy Lett. 2021, 6, 621.

[4]

S. Hamidi, K. Askari, P. Salimi, New J. Chem. 2023, 47, 12085.

[5]

J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov, H. Liu, J. Wang, Small 2019, 1903934, 1.

[6]

L. Zhou, D. L. Danilov, F. Qiao, J. Wang, H. Li, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2022.

[7]

A. Manthiram, Y. Fu, S. Chung, C. Zu, Y. Su, Chem. Rev. 2014, 114, 11751.

[8]

L. Wang, Z. Schnepp, M. M. Titirici, J. Mater. Chem. A 2013, 1, 5269.

[9]

J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, J. Mater. Chem. A 2017, 5, 2411.

[10]

P. Salimi, S. Javadian, O. Norouzi, H. Gharibi, Environ. Sci. Pollut. Res. 2017, 24, 27974.

[11]

P. Salimi, K. Askari, O. Norouzi, S. Kamali, J. Electron. Mater. 2019, 48, 951.

[12]

W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Electrochim. Acta 2015, 176, 533.

[13]

I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 2011, 334, 75.

[14]

H. Parsimehr, A. Ehsani, S. A. Payam, Biomass Convers. Biorefinery 2022, 18, 100190.

[15]

Y. Yao, F. Wu, Nano Energy 2015, 17, 91.

[16]

O. Norouzi, P. Salimi, F. Di Maria, S. E. M. Pourhosseini, F. Safari, 2019, 233.

[17]

S. Marzeddu, A. Cappelli, A. Ambrosio, M. A. Décima, P. Viotti, M. R. Boni, Land 2021, 10, 1256.

[18]

P. Salimi, E. Venezia, S. Taghavi, S. Tieuli, L. Carbone, M. Prato, M. Signoretto, J. Qiu, R. Proietti Zaccaria, Energy Environ. Mater. 2023.

[19]

P. Salimi, S. Tieuli, S. Taghavi, E. Venezia, S. Fugattini, S. Lauciello, M. Prato, S. Marras, T. Li, M. Signoretto, P. Costamagna, R. Proietti Zaccaria, Green Chem. 2022, 24, 4119.

[20]

W. Vercruysse, B. Noppen, M. Jozefczak, M. Huybrechts, E. Derveaux, B. Vandecasteele, A. Cuypers, W. Marchal, D. Vandamme, ACS Sustain. Chem. Eng. 2023, 11, 14267.

[21]

E. Sierocinski, F. Holzinger, J. F. Chenot, Eur. J. Clin. Pharmacol. 2021, 77, 1113.

[22]

T. Sternberg, H. Viles, A. Cathersides, M. Edwards, Sci. Total Environ. 2010, 409, 162.

[23]

R. W. F. Cameron, J. Taylor, M. Emmett, Build. Environ. 2015, 92, 111.

[24]

W. Vercruysse, J. Smeets, T. Haeldermans, B. Joos, A. Hardy, P. Samyn, J. Yperman, K. Vanreppelen, R. Carleer, P. Adriaensens, W. Marchal, D. Vandamme, J. Anal. Appl. Pyrolysis 2021, 159, 105294.

[25]

N. L. Panwar, A. Pawar, Biomass Convers. Biorefinery 2020, 12, 925.

[26]

G. Vázquez, G. Antorrena, J. Gonzalez, S. Freire, Holzforschung 1997, 51, 158.

[27]

Z. Yang, H. Peng, W. Wang, T. Liu, J. Appl. Polym. Sci. 2010, 116, 2658.

[28]

G. Bekiaris, G. Koutrotsios, P. A. Tarantilis, C. S. Pappas, G. I. Zervakis, J. Mater. Cycles Waste Manag. 2020, 22, 1027.

[29]

G. Müller, C. Schöpper, H. Vos, A. Kharazipour, A. Polle, Bioresources 2009, 4, 49.

[30]

A. M. Raspolli Galletti, A. D’Alessio, D. Licursi, C. Antonetti, G. Valentini, A. Galia, N. Nassi O Di Nasso, J. Spectrosc. 2015, 719042.

[31]

T. Haeldermans, J. Claesen, J. Maggen, R. Carleer, J. Yperman, P. Adriaensens, P. Samyn, D. Vandamme, A. Cuypers, K. Vanreppelen, S. Schreurs, J. Anal. Appl. Pyrolysis 2019, 138, 218.

[32]

Y. Liu, Z. He, M. Uchimiya, Mod. Appl. Sci. 2015, 9, 246.

[33]

P. González-García, S. Gamboa-González, I. Andrade Martínez, T. Hernández-Quiroz, Environ. Prog. Sustain. Energy 2020.

[34]

L. Huang, Y. Sun, W. Wang, Q. Yue, T. Yang, Chem. Eng. J. 2011, 171, 1446.

[35]

C. Marino, J. Cabanero, M. Povia, C. Villevieille, J. Electrochem. Soc. 2018, 165, A1400.

[36]

N. Song, N. Guo, C. Ma, Y. Zhao, W. Li, B. Li, Molecules 2023, 28, 3595.

[37]

P. Salimi, O. Norouzi, S. E. M. Pourhoseini, P. Bartocci, A. Tavasoli, F. Di Maria, S. M. Pirbazari, G. Bidini, F. Fantozzi, Renew. Energy 2019, 140, 704.

[38]

H. Moon, A. Innocenti, H. Liu, H. Zhang, M. Weil, M. Zarrabeitia, S. Passerini, ChemSusChem 2022, 16, e202201713.

[39]

C. Quan, R. Su, N. Gao, Int. J. Energy Res. 2020, 44, 4335.

[40]

H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, J. Mater. Chem. A 2020, 8, 3606.

[41]

A. Tomczyk, Z. Sokołowska, P. Boguta, Rev. Environ. Sci. Biotechnol. 2020, 19, 191.

[42]

Y. Jia, S. Shi, J. Liu, S. Su, Q. Liang, X. Zeng, T. Li, Appl. Sci. 2018, 8, 1019.

[43]

K. Xu, Y. Li, J. Xiong, X. Ou, W. Su, G. Zhong, C. Yang, Front. Chem. 2018.

[44]

S. Guo, Y. Chen, L. Shi, Y. Dong, J. Ma, X. Chen, H. Song, Appl. Surf. Sci. 2018, 437, 136.

[45]

Z. Nie, Y. Huang, B. Ma, X. Qiu, N. Zhang, X. Xie, Z. Wu, Sci. Rep. 2019, 9, 15032.

[46]

L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum, J. Hassoun, J. Power Sources 2015, 299, 460.

[47]

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2018, 95, 197.

[48]

Z. Parviz, P. Salimi, S. Javadian, H. Gharibi, A. Morsali, E. Bayat, L. Leoncino, S. Lauciello, R. P. Zaccaria, 2022.

[49]

Z. Nie, Y. Huang, B. Ma, X. Qiu, N. Zhang, X. Xie, Z. Wu, Sci. Rep. 2019, 9, 1.

[50]

Y. Wan, Y. Liu, D. Chao, W. Li, D. Zhao, Nano Mater. Sci. 2023, 5, 189.

[51]

X. Lin, Y. Liu, H. Tan, B. Zhang, Carbon N. Y. 2020, 157, 316.

[52]

Y. Morikawa, S. Ichi Nishimura, R. Ichi Hashimoto, M. Ohnuma, A. Yamada, Adv. Energy Mater. 2020.

[53]

K. Yu, J. Li, H. Qi, C. Liang, Diam. Relat. Mater. 2018, 86, 139.

[54]

W. G. Morais, M. M. Leite, R. M. Torresi, J. Electroanal. Chem. 2021, 897, 115595.

[55]

S. Alvin, H. S. Cahyadi, J. Hwang, W. Chang, S. K. Kwak, J. Kim, Adv. Energy Mater. 2020, 10, 2000283.

[56]

A. Benítez, D. Di Lecce, G. A. Elia, Á. Caballero, J. Morales, J. Hassoun, ChemSusChem 2018, 11, 1512.

[57]

H. Hamed, B. G. Choobar, S. Hamtaei, J. D. Haen, B. Vermang, M. Safari, J. Electrochem. Soc. 2024, 171, 020510.

[58]

M. Agostini, J. Hassoun, J. Liu, M. Jeong, H. Nara, T. Momma, T. Osaka, Y. K. Sun, B. Scrosati, ACS Appl. Mater. Interfaces 2014, 6, 10924.

[59]

J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H. T. Grossmann, P. Strubel, H. Althues, S. Spange, S. Kaskel, Adv. Funct. Mater. 2014, 24, 1284.

[60]

Z. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563.

[61]

T. Haeldermans, M. A. Lataf, G. Vanroelen, P. Samyn, D. Vandamme, A. Cuypers, K. Vanreppelen, S. Schreurs, Powder Technol. 2019, 354, 392.

[62]

K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, Waste Manag. Res. 2014, 32, 634.

[63]

American Standard of Testing Material, Astm D 2866–11 2011.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/