High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode

Zhongming Chen , Zhijian Du , La Li , Kai Jiang , Di Chen , Guozhen Shen

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12756

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12756 DOI: 10.1002/eem2.12756
RESEARCH ARTICLE

High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode

Author information +
History +
PDF

Abstract

Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics. However, the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application. In this paper, we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn2O4@Ti3C2Tx MXene composites (ZMO@Ti3C2Tx MXene) electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte, which realized the thermoelectric conversion and electrical energy storage at the same time. This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K−1, thermal voltage of 243 mV, and outstanding heat-to-electricity conversion efficiency of up to 6.48% at the temperature difference of 4.4 K. In addition, this device showed excellent charge–discharge cycling stability at high-temperature differences (3 K) and low-temperature differences (1 K), respectively. Connecting two thermally chargeable supercapacitor units in series, the generated output voltage of 500 mV further confirmed the stability of devices. When a single device was worn on the arm, a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.

Keywords

ionogel electrode / Soret effect / thermally chargeable supercapacitor / Ti 3C 2T x MXene / UIO-66 MOF

Cite this article

Download citation ▾
Zhongming Chen, Zhijian Du, La Li, Kai Jiang, Di Chen, Guozhen Shen. High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode. Energy & Environmental Materials, 2024, 7(6): e12756 DOI:10.1002/eem2.12756

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Hu, P. L. Chee, S. Sugiarto, Y. Yu, C. Shi, R. Yan, Z. Yao, X. Shi, J. Zhi, D. Kai, H.-D. Yu, W. Huang, Adv. Mater. 2023, 35, 2205326.

[2]

Y. Liu, M. Pharr, G. A. Salvatore, ACS Nano 2017, 11, 9614.

[3]

Y. Yang, W. Gao, Chem. Soc. Rev. 2019, 48, 1465.

[4]

L. Huang, S. Lin, Z. Xu, H. Zhou, J. Duan, B. Hu, J. Zhou, Adv. Mater. 2020, 32, 1902034.

[5]

S. L. Kim, H. T. Lin, C. Yu, Adv. Energy Mater. 2016, 6, 1600546.

[6]

X. Xu, L. Li, W. Liu, Z. Chen, D. Chen, G. Shen, Adv. Mater. Interfaces 2022, 9, 2201165.

[7]

Y. An, Z. Li, Y. Sun, Z. Chen, J. Jiang, H. Dou, X. Zhang, Energy Environ. Mater. 2023, 6, e12305.

[8]

Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma, Y. Cao, Adv. Mater. 2021, 33, 2102990.

[9]

Z. Fan, P. Li, D. Du, J. Ouyang, Adv. Energy Mater. 2017, 7, 1602116.

[10]

S. Sun, M. Li, X.-L. Shi, Z.-G. Chen, Adv. Energy Mater. 2023, 13, 2203692.

[11]

M. Bonetti, S. Nakamae, M. Roger, P. Guenoun, J. Chem. Phys. 2011, 134, 114513.

[12]

B. Chen, Q. Chen, S. Xiao, J. Feng, X. Zhang, T. Wang, Sci. Adv. 2021, 7, eabi7233.

[13]

Y. Fang, H. Cheng, H. He, S. Wang, J. Li, S. Yue, L. Zhang, Z. Du, J. Ouyang, Adv. Funct. Mater. 2020, 30, 2004699.

[14]

S. Liu, Y. Yang, H. Huang, J. Zheng, G. Liu, T. H. To, B. Huang, Sci. Adv. 2022, 8, eabj3019.

[15]

W. Zhao, Z. Lei, P. Wu, Adv. Sci. 2023, 10, 2300253.

[16]

H. Cheng, X. He, Z. Fan, J. Ouyang, Adv. Energy Mater. 2019, 9, 1901085.

[17]

Z. Liu, H. Cheng, Q. Le, R. Chen, J. Li, J. Ouyang, Adv. Energy Mater. 2022, 12, 2200858.

[18]

Q. Qian, H. Cheng, Q. Le, J. Ouyang, Adv. Funct. Mater. 2023, 33, 2303311.

[19]

D. Zhao, A. Martinelli, A. Willfahrt, T. Fischer, D. Bernin, Z. U. Khan, M. Shahi, J. Brill, M. P. Jonsson, S. Fabiano, X. Crispin, Nat. Commun. 2019, 10, 1093.

[20]

L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 2018, 3, 1597.

[21]

X. He, S. Jin, L. Miao, Y. Cai, Y. Hou, H. Li, K. Zhang, Z. Yan, J. Chen, Angew. Chem. Int. Ed. 2020, 59, 16705.

[22]

D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi, J. Lee, S. M. Lee, Y. Cho, M. Jeong, J. Lee, J. Oh, C. Yang, H. Park, Joule 2020, 4, 1021.

[23]

J.-h. Liu, X.-y. Xu, C. Liu, D.-Z. Chen, New J. Chem. 2021, 45, 12435.

[24]

M. Usman, M. Adnan, M. T. Ahsan, S. Javed, M. S. Butt, M. A. Akram, ACS Omega 2021, 6, 1190.

[25]

X. Wu, B. Huang, Q. Wang, Y. Wang, Chem. Eng. J. 2019, 373, 493.

[26]

L. Chen, J. Xu, M. Zhu, Z. Zeng, Y. Song, Y. Zhang, X. Zhang, Y. Deng, R. Xiong, C. Huang, Mater. Horiz. 2023, 10, 4000.

[27]

W. Meng, X. Liu, H. Song, Y. Xie, X. Shi, M. Dargusch, Z.-G. Chen, Z. Tang, S. Lu, Nano Today 2021, 40, 101273.

[28]

Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang, G. Sun, W. Huang, ACS Nano 2021, 15, 3996.

[29]

L. Li, W. Liu, K. Jiang, D. Chen, F. Qu, G. Shen, Nano-Micro Lett. 2021, 13, 100.

[30]

Z. Du, W. Liu, J. Liu, Z. Chu, F. Qu, L. Li, G. Shen, Adv. Mater. Interfaces 2023, 10, 2300266.

[31]

W. Wang, D. Jiang, X. Chen, K. Xie, Y. Jiang, Y. Wang, Appl. Surf. Sci. 2020, 515, 145982.

[32]

M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, O. K. Farha, Chem. Commun. 2013, 49, 9449.

[33]

L. Li, M. Wang, J. Wang, F. Ye, S. Wang, Y. Xu, J. Liu, G. Xu, Y. Zhang, Y. Zhang, C. Yan, N. V. Medhekar, M. Liu, Y. Zhang, J. Mater. Chem. A 2020, 8, 8033.

[34]

A. K. Solarajan, V. Murugadoss, S. Angaiah, J. Appl. Polym. Sci. 2017, 134, 45177.

[35]

W. Feng, J. Zhang, A. Yusuf, X. Ao, D. Shi, V. Etacheri, D.-Y. Wang, Chem. Eng. J. 2022, 427, 130919.

[36]

A. Wang, Y. Zhou, Z. Wang, M. Chen, L. Sun, X. Liu, RSC Adv. 2016, 6, 3671.

[37]

J. Yu, X. Wang, L. Chen, G. Lu, G. Shi, X. Xie, Y. Wang, J. Sun, Chem. Eng. J. 2022, 435, 135033.

[38]

L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, X. Luo, J. Lu, K. Amine, G. Yu, Nat. Commun. 2017, 8, 15139.

[39]

L. Wei, C. Xiong, H. R. Jiang, X. Z. Fan, T. S. Zhao, Energy Storage Mater. 2020, 25, 885.

[40]

X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li, H. Qiu, H. B. Wu, J. Wang, X. Wang, C. Gu, J. Tu, Nano Lett. 2023, 15, 56.

[41]

Z. A. Akbar, J.-W. Jeon, S.-Y. Jang, Energy Environ. Sci. 2020, 13, 2915.

[42]

M. Jeong, J. Noh, M. Z. Islam, K. Kim, A. Sohn, W. Kim, C. Yu, Adv. Funct. Mater. 2021, 31, 2011016.

[43]

C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen, Science 2020, 368, 1091.

[44]

X. He, H. Cheng, S. Yue, J. Ouyang, J. Mater. Chem. A 2020, 8, 10813.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/