Enhanced Electrical Properties of Bi2–xSbxTe3 Nanoflake Thin Films Through Interface Engineering

Xudong Wu , Junjie Ding , Wenjun Cui , Weixiao Lin , Zefan Xue , Zhi Yang , Jiahui Liu , Xiaolei Nie , Wanting Zhu , Gustaaf Van Tendeloo , Xiahan Sang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12755

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12755 DOI: 10.1002/eem2.12755
RESEARCH ARTICLE

Enhanced Electrical Properties of Bi2–xSbxTe3 Nanoflake Thin Films Through Interface Engineering

Author information +
History +
PDF

Abstract

The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2–xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2–xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m−1 K−2, which is 43% higher than that of a pure Bi2Te3 thin film.

Keywords

Bi 2Te 3 nanoflakes / interface engineering / scanning transmission electron microscopy / thermoelectric thin film

Cite this article

Download citation ▾
Xudong Wu, Junjie Ding, Wenjun Cui, Weixiao Lin, Zefan Xue, Zhi Yang, Jiahui Liu, Xiaolei Nie, Wanting Zhu, Gustaaf Van Tendeloo, Xiahan Sang. Enhanced Electrical Properties of Bi2–xSbxTe3 Nanoflake Thin Films Through Interface Engineering. Energy & Environmental Materials, 2024, 7(6): e12755 DOI:10.1002/eem2.12755

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.

[2]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan, Nat. Nanotechnol. 2014, 9, 1024.

[3]

Z. Zhou, F. Hou, X. Huang, G. Wang, Z. Fu, W. Liu, G. Yuan, X. Xi, J. Xu, J. Lin, L. Gao, Nature 2023, 621, 499.

[4]

Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu, D. M. Tang, J. Tan, D. M. Sun, P. X. Hou, X. Q. Chen, K. Tai, N. Gao, C. Liu, H. M. Cheng, X. Jiang, Nat. Mater. 2019, 18, 62.

[5]

K. S. Burch, D. Mandrus, J. G. Park, Nature 2018, 563, 47.

[6]

M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 2019, 14, 408.

[7]

C. Li, S. Ma, P. Wei, W. Zhu, X. Nie, X. Sang, Z. Sun, Q. Zhang, W. Zhao, Energy Environ. Sci. 2020, 13, 535.

[8]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[9]

M. C. Lemme, D. Akinwande, C. Huyghebaert, C. Stampfer, Nat. Commun. 2022, 13, 1392.

[10]

E. Y. Tsymbal, Science 2021, 372, 1389.

[11]

Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43.

[12]

M. Chen, X. Chen, H. Yang, Z. Du, H. Wen, Sci. Adv. 2018, 4, 7.

[13]

R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis, X. Tang, Energy Environ. Sci. 2018, 11, 1520.

[14]

Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Adv. Funct. Mater. 2015, 25, 966.

[15]

B. Qin, D. Wang, X. Liu, Y. Qin, J. F. Dong, J. Luo, J. W. Li, W. Liu, G. Tan, X. Tang, J. F. Li, J. He, L. D. Zhao, Science 2021, 373, 556.

[16]

C. Zhang, Z. Peng, Z. Li, L. Yu, K. A. Khor, Q. Xiong, Nano Energy 2015, 15, 688.

[17]

Y. Zheng, T. J. Slade, L. Hu, X. Y. Tan, Y. Luo, Z. Z. Luo, J. Xu, Q. Yan, M. G. Kanatzidis, Chem. Soc. Rev. 2021, 50, 9022.

[18]

Y. Lu, Y. Zhou, W. Wang, M. Hu, X. Huang, D. Mao, S. Huang, L. Xie, P. Lin, B. Jiang, B. Zhu, J. Feng, J. Shi, Q. Lou, Y. Huang, J. Yang, J. Li, G. Li, J. He, Nat. Nanotechnol. 2023, 18, 1281.

[19]

Y. Yu, X. Xu, Y. Wang, B. Jia, S. Huang, X. Qiang, B. Zhu, P. Lin, B. Jiang, S. Liu, X. Qi, K. Pan, D. Wu, H. Lu, M. Bosman, S. J. Pennycook, L. Xie, J. He, Nat. Commun. 2022, 13, 5612.

[20]

D. Su, J. Cheng, S. Li, S. Zhang, T. Lyu, C. Zhang, J. Li, F. Liu, L. Hu, J. Mater. Sci. Technol. 2023, 138, 50.

[21]

S. He, A. Bahrami, X. Zhang, I. G. Martínez, S. Lehmann, K. Nielsch, Adv. Mater. Technol. 2022, 7, 2100953.

[22]

S. He, J. Yang, A. Bahrami, X. Zhang, R. He, M. Hantusch, S. Lehmann, K. Nielsch, ACS Appl. Energy Mater. 2022, 5, 4041.

[23]

S. Lehmann, F. Mitzscherling, S. He, J. Yang, M. Hantusch, K. Nielsch, A. Bahrami, Coatings 2023, 13, 641.

[24]

K. C. Kim, S. S. Lim, S. H. Lee, J. Hong, D. Y. Cho, A. Y. Mohamed, C. M. Koo, S. H. Baek, J. S. Kim, S. K. Kim, ACS Nano 2019, 13, 7146.

[25]

C. Wan, R. Tian, M. Kondou, R. Yang, P. Zong, K. Koumoto, Nat. Commun. 2017, 8, 1024.

[26]

R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M. Y. Chou, M. T. Agne, J. He, G. J. Snyder, X. Shi, L. Chen, Energy Environ. Sci. 2017, 10, 1928.

[27]

G. Han, W. Zhu, S. Guo, J. Zhou, Y. Liu, Y. Deng, J. Mater. Sci. Technol. 2023, 160, 18.

[28]

W. Liu, S. Bai, J. Mater. 2019, 5, 321.

[29]

L. Xie, L. Yin, Y. Yu, G. Peng, S. Song, P. Ying, S. Cai, Y. Sun, W. Shi, H. Wu, N. Qu, F. Guo, W. Cai, H. Wu, Q. Zhang, K. Nielsch, Z. Ren, Z. Liu, J. Sui, Science 2023, 382, 921.

[30]

B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.

[31]

C. Hollar, Z. Lin, M. Kongara, T. Varghese, C. Karthik, J. Schimpf, J. Eixenberger, P. H. Davis, Y. Wu, X. Duan, Y. Zhang, D. Estrada, Adv. Mater. Technol. 2020, 5, 2000600.

[32]

B. Du, J. Wu, X. Lai, Y. Deng, S. Wang, H. Liu, J. Liu, J. Jian, Ceram. Int. 2019, 45, 3244.

[33]

S. He, S. Lehmann, A. Bahrami, K. Nielsch, Adv. Energy Mater. 2021, 11, 2101877.

[34]

M. Hong, Z. Chen, L. Yang, J. Zou, Nanoscale 2016, 8, 8681.

[35]

M. Hong, Z. G. Chen, L. Yang, G. Han, J. Zou, Adv. Electron. Mater. 2015, 1, 1500025.

[36]

M. Hong, Z. G. Chen, L. Yang, J. Zou, Nano Energy 2016, 20, 144.

[37]

X. Mu, H. Zhou, D. He, W. Zhao, P. Wei, W. Zhu, X. Nie, H. Liu, Q. Zhang, Nano Energy 2017, 33, 55.

[38]

L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Adv. Energy Mater. 2015, 5, 1500411.

[39]

O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin, N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pantelides, S. J. Pennycook, Nature 2010, 464, 571.

[40]

J. Mi, P. Norby, M. Bremholm, B. B. Iversen, Chem. Mat. 2017, 29, 5070.

[41]

W. Cui, W. Lin, W. Lu, C. Liu, Z. Gao, H. Ma, W. Zhao, G. van Tendeloo, W. Zhao, Q. Zhang, X. Sang, Nat. Commun. 2023, 14, 554.

[42]

X. Sang, Y. Xie, D. E. Yilmaz, R. Lotfi, M. Alhabeb, A. Ostadhossein, B. Anasori, W. Sun, X. Li, K. Xiao, P. R. C. Kent, A. C. T. van Duin, Y. Gogotsi, R. R. Unocic, Nat. Commun. 2018, 9, 2266.

[43]

X. Sang, X. Li, W. Zhao, J. Dong, C. M. Rouleau, D. B. Geohegan, F. Ding, K. Xiao, R. R. Unocic, Nat. Commun. 2018, 9, 2051.

[44]

X. Sang, E. D. Grimley, C. Niu, D. L. Irving, J. M. LeBeau, Appl. Phys. Lett. 2015, 106, 061101.

[45]

H. Wang, F. Liu, R. Yu, J. Wu, Interdiscip. Mater. 2022, 1, 196.

[46]

A. A. Volykhov, J. Sánchez-Barriga, A. P. Sirotina, V. S. Neudachina, A. S. Frolov, E. A. Gerber, E. Y. Kataev, B. Senkovsky, N. O. Khmelevsky, A. Y. Aksenenko, N. V. Korobova, A. Knop-Gericke, O. Rader, L. V. Yashina, Chem. Mat. 2016, 28, 8916.

[47]

R. J. Macedo, S. E. Harrison, T. S. Dorofeeva, J. S. Harris, R. A. Kiehl, Nano Lett. 2015, 15, 4241.

[48]

W. Lu, W. Cui, W. Zhao, W. Lin, C. Liu, G. van Tendeloo, X. Sang, W. Zhao, Q. Zhang, Adv. Mater. Interfaces 2022, 9, 2102161.

[49]

Y. Chen, X. Nie, C. Sun, S. Ke, W. Xu, Y. Zhao, W. Zhu, W. Zhao, Q. Zhang, Adv. Funct. Mater. 2022, 32, 2111373.

[50]

F. Liu, M. Zhang, P. Nan, X. Zheng, Y. Li, K. Wu, Z. Han, B. Ge, X. Zhao, C. Fu, T. Zhu, Small Sci. 2023.

[51]

K. Park, K. Ahn, J. Cha, S. Lee, S. I. Chae, S. P. Cho, S. Ryee, J. Im, J. Lee, S. D. Park, M. J. Han, I. Chung, T. Hyeon, J. Am. Chem. Soc. 2016, 138, 14458.

[52]

C. Hu, K. Xia, C. Fu, X. Zhao, T. Zhu, Energy Environ. Sci. 2022, 15, 1406.

[53]

J. Zhang, W. Ming, Z. Huang, G.-B. Liu, X. Kou, Y. Fan, K. L. Wang, Y. Yao, Phys. Rev. B 2013, 88, 235131.

[54]

M. Tan, X. L. Shi, W. D. Liu, M. Li, Y. Wang, H. Li, Y. Deng, Z. G. Chen, Adv. Energy Mater. 2021, 11, 2102578.

[55]

Y. Xu, Y. Zhou, X. D. Wang, W. Zhang, E. Ma, V. L. Deringer, R. Mazzarello, Adv. Mater. 2022, 34, 2109139.

[56]

Y. Zhang, L. Hu, T. Zhu, J. Xie, X. Zhao, Cryst. Growth Des. 2013, 13, 645.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/