Understanding Bonding Nature of α-Keggin Polyoxometalates [XW12O40]n− (X = Al, Si, P, S): A Generalized Superatomic Perspective

Rui Li , Yulei Shi , Famin Yu , Rui Wang , Haitao Yan , Boon K. Teo , Zhigang Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12754

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12754 DOI: 10.1002/eem2.12754
RESEARCH ARTICLE

Understanding Bonding Nature of α-Keggin Polyoxometalates [XW12O40]n− (X = Al, Si, P, S): A Generalized Superatomic Perspective

Author information +
History +
PDF

Abstract

α-Keggin polyoxometalates (POMs) [XW12O40]n− (X = Al, Si, P, S) are widely used in batteries owing to their remarkable redox activity. However, the mechanism underlying the applications appears inconsistent with the widely accepted covalent bonding nature. Here, first-principles calculations show that XW12 are core–shell structures composed of a shell and an XO4n− core, both are stabilized by covalent interactions. Interestingly, owing to the presence of a substantial number of electrons in W12O36 shell, the frontier molecular orbitals of XW12 are not only strongly delocalized but also exhibit superatomic properties with high-angular momentum electrons that do not conform to the Jellium model. Detailed analysis indicates that energetically high lying filled molecular orbitals (MOs) have reached unusually high-angular momentum characterized by quantum number K or higher, allowing for the accommodation of numerous electrons. This attribute confers strong electron acceptor ability and redox activity to XW12. Moreover, electrons added to XW12 still occupy the K orbitals and will not cause rearrangement of the MOs, thereby maintaining the stability of these structures. Our findings highlight the structure–activity relationship and provide a direction for tailor-made POMs with specific properties at atomic level.

Keywords

first principles / molecular orbital / polyoxometalate / redox activity / superatom

Cite this article

Download citation ▾
Rui Li, Yulei Shi, Famin Yu, Rui Wang, Haitao Yan, Boon K. Teo, Zhigang Wang. Understanding Bonding Nature of α-Keggin Polyoxometalates [XW12O40]n− (X = Al, Si, P, S): A Generalized Superatomic Perspective. Energy & Environmental Materials, 2024, 7(6): e12754 DOI:10.1002/eem2.12754

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. I. Gumerova, A. Rompel, Nat. Rev. Chem. 2018, 2, 112.

[2]

B. Botar, A. Ellern, R. Hermann, Angew. Chem. Int. Ed. 2009, 48, 9080.

[3]

Y. Nishimoto, D. Yokogawa, H. Yoshikawa, J. Am. Chem. Soc. 2014, 136, 9042.

[4]

J. J. Chen, M. D. Symes, S. C. Fan, M. S. Zheng, H. N. Miras, Q. F. Dong, L. Cronin, Adv. Mater. 2015, 27, 4649.

[5]

M. Yang, X. Wang, C. J. Gómez-García, Z. Jin, J. Xin, X. Cao, H. Ma, H. Pang, L. Tan, G. Yang, Y. Kan, Adv. Funct. Mater. 2023, 33, 2214495.

[6]

F. Ai, Z. Wang, N. C. Lai, Q. Zou, Z. Liang, Y. C. Lu, Nat. Energy 2022, 7, 417.

[7]

J. J. Chen, M. D. Symes, L. Cronin, Nat. Chem. 2018, 10, 1042.

[8]

J. H. Kruse, M. Langer, I. Romanenko, I. Trentin, D. Hernández-Castillo, L. González, F. H. Schacher, C. Streb, Adv. Funct. Mater. 2022, 32, 2208428.

[9]

S. Mir, B. Yadollahi, R. Omidyan, G. Azimi, RSC Adv. 2020, 10, 33718.

[10]

H. Taketa, S. Katsuki, K. Eguchi, T. Seiyama, N. Yamazoe, J. Phys. Chem. C 1986, 90, 2959.

[11]

K. Eguchi, T. Seiyama, N. Yamazoe, S. Katsuki, H. Taketa, J. Catal. 1988, 111, 336.

[12]

Q. Fu, M. Yang, B. Chen, E. B. Wang, D. M. Xie, Z. M. Jiang, J. Peng, Chem. Res. Chin. Univ. 1997, 13, 262.

[13]

A. J. Bridgeman, G. Cavigliasso, J. Phys. Chem. A 2003, 107, 6613.

[14]

X. López, J. M. Poblet, Inorg. 2004, 43, 6863.

[15]

F. Steffler, G. F. De Lima, H. A. Duarte, J. Mol. Struct. 2020, 1213, 128159.

[16]

J. C. Raabe, T. Esser, F. Jameel, M. Stein, J. Albert, M. J. Poller, Inorg. Chem. Front. 2023, 10, 4854.

[17]

H. Wang, S. Hamanaka, Y. Nishimoto, S. Irle, T. Yokoyama, H. Yoshikawa, K. Awaga, J. Am. Chem. Soc. 2012, 134, 4918.

[18]

X. López, J. M. Maestre, C. Bo, J. M. Poblet, J. Am. Chem. Soc. 2001, 123, 9571.

[19]

Y. P. Tong, G. T. Luo, J. Zhen, Y. Shen, Y. W. Lin, CrstEngComm 2015, 17, 2629.

[20]

F. Clavería-Cádiz, R. Arratia-Pérez, D. MacLeod-Carey, Polyhedron. 2016, 117, 478.

[21]

W. Guan, L. Yan, Z. Su, S. Liu, M. Zhang, X. Wang, Inorg. Chem. 2005, 44, 100.

[22]

J. Liu, Y. Li, Z. Chen, N. Liu, L. R. Zheng, W. X. Shi, X. Wang, J. Am. Chem. Soc. 2022, 144, 23191.

[23]

Q. Liu, Q. Zhang, W. Shi, H. Hu, J. Zhuang, X. Wang, Nat. Chem. 2022, 14, 433.

[24]

W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 1984, 52, 2141.

[25]

S. N. C. Khanna, P. Jena, Phys. Rev. Lett. 1992, 69, 1664.

[26]

S. N. Khanna, P. Jena, Chem. Phys. Lett. 1994, 219, 479.

[27]

A. Muñoz-Castro, R. Arratia-Perez, Phys. Chem. Chem. Phys. 2012, 14, 1408.

[28]

Z. Luo, A. W. Castleman, Acc. Chem. Res. 2014, 47, 2931.

[29]

S. N. Khanna, P. Jena, Phys. Rev. B. 1995, 51, 13705.

[30]

K. Wang, C. Xu, D. Li, L. J. Cheng, Chem. Commun. 2020, 3, 39.

[31]

X. Dai, Y. Gao, W. Jiang, Y. Y. Lei, Z. G. Wang, Phys. Chem. Chem. Phys. 2015, 17, 23308.

[32]

K. Clemenger, Phys. Rev. B. 1985, 32, 1359.

[33]

W. D. Knight, W. A. de Heer, K. Clemenger, W. A. Saunders, Solid State Commun. 1985, 53, 445.

[34]

S. Stegmaier, T. F. Fässler, J. Am. Chem. Soc. 2011, 133, 19758.

[35]

B. K. Teo, S. Y. Yang, J. Clust. Sci. 2015, 26, 1923.

[36]

T. H. Chiu, J. H. Liao, F. Gam, I. Chantrenne, S. Kahlal, J. Y. Saillard, C. W. Liu, J. Am. Chem. Soc. 2019, 141, 12957.

[37]

Z. Wang, F. Alkan, C. M. Aikens, M. Kurmoo, Z. Y. Zhang, K. P. Song, C. H. Tung, D. Sun, Angew. Chem. Int. Ed. 2022, 61, e202206742.

[38]

L. Liu, P. Li, L. F. Yuan, L. J. Cheng, L. Yang, Nanoscale 2016, 8, 12787.

[39]

R. X. Jin, C. Liu, S. Zhao, A. Das, H. Z. Xing, C. Gayathri, Y. Xing, N. L. Rosi, R. R. Gil, R. C. Jin, ACS Nano 2015, 9, 8530.

[40]

L. Cheng, J. Yang, J. Chem. Phys. 2013, 138, 141101.

[41]

R. Wang, X. Yang, W. Huang, Z. Liu, Y. Zhu, H. Liu, Z. Wang, Iscience. 2023, 26, 106281.

[42]

M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157.

[43]

C. J. Bradley, A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Clarwndon Press, New York 1972.

[44]

S. L. Altmann, P. Herzig, Point Group Theory Tables, Clarendon Press, New York 1994.

[45]

A. Muñoz-Castro, Chem. Commun. 2019, 55, 7307.

[46]

M. Feng, J. Zhao, H. Petek, Science 2008, 320, 359.

[47]

H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. L. S. Wang, Nat. Chem. 2014, 6, 727.

[48]

H. Dong, T. Hou, S. T. Lee, Y. Li, Sci. Rep. 2015, 5, 9952.

[49]

E. A. Doud, A. Voevodin, T. J. Hochuli, A. M. Champsaur, C. Nuckolls, X. Roy, Nat. Rev. Mater. 2020, 5, 371.

[50]

W. Xie, J. Wang, J. Wang, X. Wu, Z. Wang, R. Zhang, J. Phys. Chem. C 2020, 124, 3881.

[51]

X. Wu, F. Yu, W. Xie, Z. Liu, Z. Wang, S. Zhang, J. Phys. Chem. Lett. 2022, 13, 2632.

[52]

X. Zhang, Y. Wang, H. Wang, A. Lim, G. Gantefoer, K. H. Bowen Jr., J. U. Reveles, S. N. Khanna, J. Am. Chem. Soc. 2013, 135, 4856.

[53]

T. Lu, Advanced Materials homepage, http://www.advmat.de (accessed: July 2007).

[54]

M. Yang, H. Li, J. Wang, W. Shi, Q. Zhang, H. Xing, W. Ren, B. Sun, M. Guo, E. Xu, N. Sun, L. Zhou, Y. Xiao, M. Zhang, Z. Li, J. Pan, J. Jiang, Z. I. Shen, X. Li, L. Gu, C. Nan, X. Wang, Y. Shen, Nat. Energy 2024, 9, 143.

[55]

L. Yan, X. López, J. J. Carbó, R. Sniatynsky, D. C. Duncan, J. M. Poblet, J. Am. Chem. Soc. 2008, 130, 8223.

[56]

W. A. Neiwert, J. J. Cowan, K. I. Hardcastle, C. L. Hill, I. Weinstock, Inorg. Chem. 2002, 41, 6950.

[57]

R. L. Carter, Molecular Symmetry and Group Theory, John Wiley & Sons, New York 1997.

[58]

S. Y. Kang, Z. A. Nan, Q. M. Wang, J. Phys. Chem. Lett. 2022, 13, 291.

[59]

J. Li, X. Li, H. J. Zhai, L. S. Wang Science 2003, 299, 864.

[60]

H. W. A. De, Rev. Mod. Phys. 1993, 65, 611.

[61]

Z. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, A. W. Castleman Jr., J. Am. Chem. Soc. 2013, 135, 4307.

[62]

V. W. Day, W. G. Klemperer, Science. 1985, 228, 533.

[63]

A. Cheng, R. Wang, Z. Liu, R. Liu, W. Huang, Z. Wang, J. Phys. Chem. Lett. 2021, 12, 8713.

[64]

T. Lu, Q. Chen, In Conceptual Density Functional Theory, Vol. 2, WILEY-VCH GmbH, Weinheim 2022, p. 631.

[65]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580

[66]

R. G. Parr, L. Szentpály, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922.

[67]

J. Melin, P. W. Ayers, J. V. Ortiz, J. Phys. Chem. A 2007, 111, 10017.

[68]

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785.

[69]

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.

[70]

P. C. Hariharan, J. A. Pople, Theor. Chem. Acta. 1973, 28, 213.

[71]

G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081.

[72]

D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta. 1990, 77, 123.

[73]

A. D. Becke, J. Chem. Phys. 1992, 96, 2155.

[74]

X. López, J. A. Fernández, S. Romo, J. F. Paul, L. Kazansky, J. M. Poblet, J. Comput. Chem. 2004, 25, 1542.

[75]

J. M. Maestre, J. M. Poblet, C. Bo, N. Casañ-Pastor, P. Gomez-Romero, Inorg. Chem. 1998, 37, 3444.

[76]

L. Andrews, B. Liang, J. Li, B. E. Bursten, J. Am. Chem. Soc. 2003, 125, 3126.

[77]

J. P. Perdew, Phys Rev B. 1986, 33, 8822.

[78]

C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[79]

M. J. Frisch, G. W. Trucks H. B. Schlegel, G. E. Scuseria M. A. Robb, J. R. Cheeseman G. Scalmani, V. Barone G. A. Petersson H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings B. Peng, A. Petrone T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision C.01, Gaussian, Inc., Wallingford, CT, USA 2019.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/