Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility

Min Luo , Changhong Wang , Yi Duan , Xuyang Zhao , Jiantao Wang , Xueliang Sun

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12753

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12753 DOI: 10.1002/eem2.12753
RESEARCH ARTICLE

Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility

Author information +
History +
PDF

Abstract

All-solid-state lithium metal batteries (ASSLMBs) featuring sulfide solid electrolytes (SEs) are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density. However, lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs. Here, a thin layer (approximately 5 nm) of g-C3N4 is coated on the surface of a sulfide SE (Li6PS5Cl), which not only lowers the electronic conductivity of Li6PS5Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li6PS5Cl interface. Additionally, the g-C3N4 coating on the surface can substantially reduce the formation of H2S when Li6PS5Cl is exposed to humid air. As a result, Li–Li symmetrical cells using g-C3N4-coated Li6PS5Cl stably cycle for 1000 h with a current density of 0.2 mA cm−2. ASSLMBs paired with LiNbO3-coated LiNi0.6Mn0.2Co0.2O2 exhibit a capacity of 132.8 mAh g−1 at 0.1 C and a high-capacity retention of 99.1% after 200 cycles. Furthermore, g-C3N4-coated Li6PS5Cl effectively mitigates the self-discharge behavior observed in ASSLMBs. This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.

Keywords

anode interface / g-C 3N 4 coating / Li 6PS 5Cl / lithium dendrite inhibition / solidstate lithium metal batteries

Cite this article

Download citation ▾
Min Luo, Changhong Wang, Yi Duan, Xuyang Zhao, Jiantao Wang, Xueliang Sun. Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility. Energy & Environmental Materials, 2024, 7(6): e12753 DOI:10.1002/eem2.12753

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279.

[2]

J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[3]

J. M. Tarascon, M. Armand, Nature 2001, 414, 359.

[4]

J. Deng, C. Bae, A. Denlinger, T. Miller, Joule 2020, 4, 511.

[5]

Z. Zhang, J. Wang, S. Zhang, H. Ying, Z. Zhuang, F. Ma, P. Huang, T. Yang, G. Han, W. Q. Han, Energy Storage Mater. 2021, 43, 229.

[6]

X. Ke, Y. Wang, L. Dai, C. Yuan, Energy Storage Mater. 2020, 33, 309.

[7]

Z. Liang, Y. Xiang, K. Wang, J. Zhu, Y. Jin, H. Wang, B. Zheng, Z. Chen, M. Tao, X. Liu, Nat. Commun. 2023, 14, 259.

[8]

Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, Renew. Sustain. Energy Rev. 2019, 109, 367.

[9]

X. Chen, Z. Guan, F. Chu, Z. Xue, F. Wu, Y. Yu, InfoMat 2022, 4, e12248.

[10]

T. Ma, Z. Wang, D. Wu, P. Lu, X. Zhu, M. Yang, J. Peng, L. Chen, H. Li, F. Wu, Energ. Environ. Sci. 2023, 16, 2142.

[11]

P. Lu, Y. Xia, G. Sun, D. Wu, S. Wu, W. Yan, X. Zhu, J. Lu, Q. Niu, S. Shi, Nat. Commun. 2023, 14, 4077.

[12]

W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, Nat. Energy 2023, 8, 800.

[13]

Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim, X. Sun, S. Hori, K. Suzuki, N. Matsui, M. Hirayama, Science 2023, 381, 50.

[14]

C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, Energ. Environ. Sci. 2021, 14, 2577.

[15]

L. Zhang, X. Zhang, Z. Rong, T. Wang, Z. Wang, Z. Wang, L. Zhang, Q. Huang, L. Zhu, L. Zhang, Nano Res. 2023, 16, 10966.

[16]

J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Adv. Mater. 2021, 33, 2000751.

[17]

Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Adv. Mater. 2019, 31, 1901131.

[18]

Q. Yang, N. Deng, J. Chen, B. Cheng, W. Kang, Chem. Eng. J. 2021, 413, 127427.

[19]

A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago, J. Mater. Chem. A 2013, 1, 6320.

[20]

T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto, J. Mater. Sci. 2013, 48, 4137.

[21]

D. Lee, K. H. Park, S. Y. Kim, J. Y. Jung, W. Lee, K. Kim, G. Jeong, J. S. Yu, J. Choi, M.-S. Park, J. Mater. Chem. A 2021, 9, 17311.

[22]

Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, J. Power Sources 2019, 410, 162.

[23]

M. Xu, S. Song, S. Daikuhara, N. Matsui, S. Hori, K. Suzuki, M. Hirayama, S. Shiotani, S. Nakanishi, M. Yonemura, Inorg. Chem. 2021, 61, 52.

[24]

L. Ye, E. Gil-González, X. Li, Electrochem. Commun. 2021, 128, 107058.

[25]

F. Zhao, J. Liang, C. Yu, Q. Sun, X. Li, K. Adair, C. Wang, Y. Zhao, S. Zhang, W. Li, Adv. Energy Mater. 2020, 10, 1903422.

[26]

W. D. Jung, M. Jeon, S. S. Shin, J. S. Kim, H. G. Jung, B. K. Kim, J. H. Lee, Y. C. Chung, H. Kim, ACS Omega 2020, 5, 26015.

[27]

J. Xu, Y. Li, P. Lu, W. Yan, M. Yang, H. Li, L. Chen, F. Wu, Adv. Energy Mater. 2022, 12, 2102348.

[28]

Z. Zhang, Y. Tian, G. Liu, M. Wu, H. He, X. Yao, J. Electrochem. Soc. 2022, 169, 40553.

[29]

Z. Jiang, H. Peng, Y. Liu, Z. Li, Y. Zhong, X. Wang, X. Xia, C. Gu, J. Tu, Adv. Energy Mater. 2021, 11, 2101521.

[30]

Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang, L. Cui, Q. Wang, X. Han, G. Cui, Adv. Funct. Mater. 2021, 31, 2101523.

[31]

J. Li, Y. Li, J. Cheng, Q. Sun, L. Dai, N. Ci, D. Li, L. Ci, J. Power Sources 2022, 518, 230739.

[32]

L. Ye, X. Li, Nature 2021, 593, 218.

[33]

X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J. P. Mwizerwa, C. Wang, X. Xu, Adv. Energy Mater. 2017, 7, 1602923.

[34]

Y. Su, L. Ye, W. Fitzhugh, Y. Wang, E. Gil-González, I. Kim, X. Li, Energ. Environ. Sci. 2020, 13, 908.

[35]

X. Ji, S. Hou, P. Wang, X. He, N. Piao, J. Chen, X. Fan, C. Wang, Adv. Mater. 2020, 32, 2002741.

[36]

H. Park, J. Kim, D. Lee, J. Park, S. Jo, J. Kim, T. Song, U. Paik, Adv. Sci. 2021, 8, 2004204.

[37]

C. Duan, Z. Cheng, W. Li, F. Li, H. Liu, J. Yang, G. Hou, P. He, H. Zhou, Energ. Environ. Sci. 2022, 15, 3236.

[38]

C. Wang, X. Sun, L. Yang, D. Song, Y. Wu, T. Ohsaka, F. Matsumoto, J. Wu, Adv. Mater. Interfaces 2021, 8, 2001698.

[39]

S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L. Zhang, L. Zhu, X. Zhang, Nat. Commun. 2021, 12, 6968.

[40]

L. Yong Gun, F. Satoshi, J. Changhoon, N. Suzuki, Y. Nobuyoshi, O. Ryo, S. Tomoyuki, R. Saebom, J. H. Ku, W. Taku, Nat. Energy 2020, 5, 299.

[41]

J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustain. Energ. Fuels 2020, 4, 5387.

[42]

G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen, J. Yang, X. Yao, Energy Storage Mater. 2021, 38, 249.

[43]

W. Weng, D. Zhou, G. Liu, L. Shen, M. Li, X. Chang, X. Yao, Mater. Futures 2022, 1, 21001.

[44]

Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu, T. Sun, Z. Zhang, L. Huang, X. Yao, Adv. Mater. 2023, 35, 2211047.

[45]

Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem. Int. Ed. 2020, 132, 3728.

[46]

Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li, T. Zhai, H. Li, Y. Cui, Adv. Mater. 2019, 31, 1900342.

[47]

L. Chen, T. Gu, J. Ma, K. Yang, P. Shi, J. Biao, J. Mi, M. Liu, W. Lv, Y. B. He, Nano Energy 2022, 100, 107470.

[48]

S. J. Liu, F. T. Li, Y. L. Li, Y. J. Hao, X. J. Wang, B. Li, R. H. Liu, Appl. Catal. Environ. 2017, 212, 115.

[49]

P. Kumar, E. Vahidzadeh, U. K. Thakur, P. Kar, K. M. Alam, A. Goswami, N. Mahdi, K. Cui, G. M. Bernard, V. K. Michaelis, J. Am. Chem. Soc. 2019, 141, 5415.

[50]

S. Tonda, S. Kumar, S. Kandula, V. Shanker, J. Mater. Chem. A 2014, 2, 6772.

[51]

H. Xu, G. Cao, Y. Shen, Y. Yu, J. Hu, Z. Wang, G. Shao, Energy Environ. Mater. 2022, 5, 852.

[52]

X. Yang, X. Gao, Q. Sun, S. P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L. Y. Kuo, J. Rohrer, Adv. Mater. 2019, 31, 1901220.

[53]

H. Duan, C. Wang, R. Yu, W. Li, J. Fu, X. Yang, X. Lin, M. Zheng, X. Li, S. Deng, Adv. Energy Mater. 2023, 13, 2300815.

[54]

Y. Lu, C. Z. Zhao, R. Zhang, H. Yuan, L. P. Hou, Z. H. Fu, X. Chen, J. Q. Huang, Q. Zhang, Sci. Adv. 2021, 7, eabi5520.

[55]

V. Milman, B. Winkler, J. White, C. Pickard, M. Payne, E. Akhmatskaya, R. Nobes, Int. J. Quantum Chem. 2000, 77, 895.

[56]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.

[57]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

224

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/