Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery

Divyaratan Kumar , Leandro R. Franco , Nicole Abdou , Rui Shu , Anna Martinelli , C. Moyses Araujo , Johannes Gladisch , Viktor Gueskine , Reverant Crispin , Ziyauddin Khan

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12752

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12752 DOI: 10.1002/eem2.12752
RESEARCH ARTICLE

Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery

Author information +
History +
PDF

Abstract

Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g-1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g-1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs.

Keywords

lignin / sustainable / water-in-salt electrolyte / Zinc / Zn-ion battery

Cite this article

Download citation ▾
Divyaratan Kumar, Leandro R. Franco, Nicole Abdou, Rui Shu, Anna Martinelli, C. Moyses Araujo, Johannes Gladisch, Viktor Gueskine, Reverant Crispin, Ziyauddin Khan. Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery. Energy & Environmental Materials, 2025, 8(1): e12752 DOI:10.1002/eem2.12752

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Department of Economic and Social Affairs Sustainable Development. United Nations. https://sdgs.un.org/2030agenda. (accessed: September, 2015)

[2]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[3]

C. F. Armer, J. S. Yeoh, X. Li, A. Lowe, J. Power Sources 2018, 395, 414.

[4]

L.-F. Zhao, Z. Hu, W.-H. Lai, Y. Tao, J. Peng, Z. C. Miao, Y. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2021, 11, 2002704.

[5]

M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[6]

Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang, Z. Huang, G. Liang, A. Chen, C. Zhi, EcoMat 2020, 2, e12035.

[7]

M. Iturrondobeitia, O. Akizu-Gardoki, O. Amondarain, R. Minguez, E. Lizundia, Adv. Sustain. Syst. 2021, 6, 2100308.

[8]

F. Wan, J. Zhu, S. Huang, Z. Niu, Batteries Supercaps 2020, 3, 323.

[9]

H. Bi, X. Wang, H. Liu, Y. He, W. Wang, W. Deng, X. Ma, Y. Wang, W. Rao, Y. Chai, H. Ma, R. Li, J. Chen, Y. Wang, M. Xue, Adv. Mater. 2020, 32, 2000074.

[10]

C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 2021, 6, 1015.

[11]

T. Wei, Y. Ren, Y. Wang, L’ Mo, Z. Li, H. Zhang, L. Hu, G. Cao, ACS Nano 2023, 17, 3765.

[12]

Z. Khan, D. Kumar, X. Crispin, Adv. Mater. 2023, 35, e2300369.

[13]

L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938.

[14]

M. Zhang, T. Dong, D. Li, K. Wang, X. Wei, S. Liu, Energy Fuel 2021, 35, 10860.

[15]

Y. Zhao, Y. Wang, Z. Zhao, J. Zhao, T. Xin, N. Wang, J. Liu, Energy Storage Mater. 2020, 28, 64.

[16]

F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543.

[17]

D. Kumar, U. Ail, Z. Wu, E. M. Björk, M. Berggren, V. Gueskine, X. Crispin, Z. Khan, Adv. Sustain. Syst. 2023, 7, 2200433.

[18]

U. Ail, J. Phopase, J. Nilsson, Z. U. Khan, O. Inganäs, M. Berggren, X. Crispin, ACS Sustain. Chem. Eng. 2020, 8, 17933.

[19]

Z. Khan, U. Ail, F. Nadia Ajjan, J. Phopase, Z. Ullah Khan, N. Kim, J. Nilsson, O. Inganäs, M. Berggren, X. Crispin, Adv. Energy Sustain. Res. 2022, 3, 2100165.

[20]

Z. Khan, A. Martinelli, L. R. Franco, D. Kumar, A. Idström, L. Evenäs, C. M. Araujo, X. Crispin, Chem. Mater. 2023, 35, 6382.

[21]

P. Li, B. P. Roberts, D. K. Chakravorty, K. M. Merz Jr., J. Chem. Theory Comput. 2013, 9, 2733.

[22]

E. M. Morais, A. Idström, L. Evenäs, A. Martinelli, Molecules 2023, 28, 5147.

[23]

S. P. Gejji, K. Hermansson, J. Lindgren, J. Phys. Chem. 1993, 97, 3712.

[24]

Y. Umebayashi, T. Yamaguchi, S. Fukuda, T. Mitsugi, M. Takeuchi, K. Fujii, S. I. Ishiguro, Anal. Sci. 2008, 24, 1297.

[25]

C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodríguez-Pérez, J. X. Jiang, C. Fang, X. Ji, Chem. Commun. 2018, 54, 14097.

[26]

Y. Wang, Y. Lei, C. Zhou, B. Wu, Y. Jiang, J. Lei, Eur. Polym. J. 2019, 118, 474.

[27]

C. Lin, X. Zhang, X. Qiang, J.-S. Zhang, Z.-J. Tan, J. Chem. Phys. 2019, 151, 114902.

[28]

H. G. de Jong, J. Lyklema, H. P. van Leeuwen, Biophys. Chem. 1987, 27, 173.

[29]

M. Plata, S. Olvera, C. Ramírez-Rodríguez, H. Dorantes-Rosales, E. M Arce-Estrada, ECS Trans. 2007, 3, 25.

[30]

A. V. Kosov, O. V. Grishenkova, O. L. Semerikova, V. A. Isaev, Y. P. Zaikov, J. Electroanal. Chem. 2021, 883, 115056.

[31]

D. E. Ciurduc, C. D. L. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Energy Storage Mater. 2022, 53, 532.

[32]

J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.

[33]

M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, e2100187.

[34]

J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z. S. Wu, Adv. Energy Mater. 2021, 11, 2101299.

[35]

Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Sci. (Weinh). 2022, 9, e2104832.

[36]

M. Egashira, Electrochemistry 2022, 90, 57001.

[37]

D. Kumar, Z. Khan, U. Ail, J. Phopase, M. Berggren, V. Gueskine, X. Crispin, Adv. Energy Sustain. Res. 2022, 3, 2200073.

[38]

W. Lu, C. Xie, H. Zhang, X. Li, ChemSusChem 2018, 11, 3996.

[39]

Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15841.

[40]

H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, B. Li, C. Zhi, ACS Nano 2018, 12, 3140.

[41]

M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. 2022, 61, e202210979.

[42]

Y. Liang, M. Qiu, P. Sun, W. Mai, Adv. Funct. Mater. 2023, 33, 2304878.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/