Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery

Xue Ye , Jianneng Liang , Baorong Du , Yongliang Li , Xiangzhong Ren , Dazhuan Wu , Xiaoping Ouyang , Qianling Zhang , Jianhong Liu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12751

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12751 DOI: 10.1002/eem2.12751
RESEARCH ARTICLE

Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery

Author information +
History +
PDF

Abstract

This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.

Keywords

in situ polymerization / lithium anode / polymer electrolyte / solid-state lithium batteries

Cite this article

Download citation ▾
Xue Ye, Jianneng Liang, Baorong Du, Yongliang Li, Xiangzhong Ren, Dazhuan Wu, Xiaoping Ouyang, Qianling Zhang, Jianhong Liu. Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery. Energy & Environmental Materials, 2024, 7(6): e12751 DOI:10.1002/eem2.12751

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, Adv. Energy Mater. 2019, 9, 1900858.

[2]

L. Wang, Z. Wu, J. Zou, P. Gao, X. Niu, H. Li, L. Chen, Joule 2019, 3, 2086.

[3]

S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun, G. Wang, Energy Stor. Mater. 2021, 34, 716.

[4]

S. Liu, L. Kang, S. C. Jun, Adv. Mater. 2021, 33, 2004689.

[5]

X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, P. C. Howlett, Adv. Mater. 2020, 32, 1905219.

[6]

B. Zhu, X. Wang, P. Yao, J. Li, J. Zhu, Chem. Sci. 2019, 10, 7132.

[7]

X.-Q. Zhang, T. Li, B.-Q. Li, R. Zhang, P. Shi, C. Yan, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252.

[8]

Q. Li, R. Deng, Y. Chen, J. Gong, P. Wang, Q. Zheng, Y. Huo, F. Xie, X. Wei, C. Yang, D. Lin, Small 2023, 19, 2303642.

[9]

P. Shi, X.-Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806.

[10]

Y. Lu, K. Korf, Y. Kambe, Z. Tu, L. A. Archer, Angew. Chem. Int. Ed. 2014, 53, 488.

[11]

S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha, M. A. Amin, M. S. A. Hossain, S. C. Jun, Y. Yamauchi, ACS Nano 2021, 15, 18931.

[12]

S. Chen, F. Dai, M. Cai, ACS Energy Lett. 2020, 5, 3140.

[13]

Q. Zhao, X. Liu, S. Stalin, K. Khan, L. A. Archer, Nat. Energy 2019, 4, 365.

[14]

S. W. Park, H. J. Choi, Y. Yoo, H.-D. Lim, J.-W. Park, Y.-J. Lee, Y.-C. Ha, S.-M. Lee, B. G. Kim, Adv. Funct. Mater. 2022, 32, 2108203.

[15]

X. Feng, Q. Liu, J. Zheng, Y. Xu, W. Chen, Compos. Commun. 2022, 29, 101026.

[16]

J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang, C. Yan, Nano Lett. 2019, 19, 3066.

[17]

L. Zhou, K.-H. Park, X. Sun, F. Lalère, T. Adermann, P. Hartmann, L. F. Nazar, ACS Energy Lett. 2019, 4, 265.

[18]

S. Lin, Y. Lin, B. He, B. Pu, Y. Ren, G. Wang, Y. Luo, S. Shi, Adv. Energy Mater. 2022, 12, 2201808.

[19]

Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Adv. Energy Mater. 2019, 9, 1900671.

[20]

M. Khurram Tufail, N. Ahmad, L. Zhou, M. Faheem, L. Yang, R. Chen, W. Yang, Chem. Eng. J. 2021, 425, 130535.

[21]

S. Liu, L. Kang, J. Hu, E. Jung, J. Henzie, A. Alowasheeir, J. Zhang, L. Miao, Y. Yamauchi, S. C. Jun, Small 2022, 18, 2104507.

[22]

S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Adv. Mater. 2021, 33, 2000721.

[23]

J. Meng, Y. Zhang, X. Zhou, M. Lei, C. Li, Nat. Commun. 2020, 11, 3716.

[24]

X. Han, S. Wang, Y. Xu, G. Zhong, Y. Zhou, B. Liu, X. Jiang, X. Wang, Y. Li, Z. Zhang, S. Chen, C. Wang, Y. Yang, W. Zhang, J. Wang, J. Liu, J. Yang, Energy Environ. Sci. 2021, 14, 5044.

[25]

C. Zhou, W. Zong, G. Zhou, X. Fan, Y.-E. Miao, Compos. Commun. 2021, 25, 100696.

[26]

G. Zhou, X. Lin, J. Liu, J. Yu, J. Wu, H. M. Law, Z. Wang, F. Ciucci, Energy Stor. Mater. 2021, 34, 629.

[27]

Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang, L. Cui, F. Jiang, Q. Wang, Y. Zhang, G. Cui, Adv. Sci. 2021, 8, 2003887.

[28]

Q. Wang, X. Xu, B. Hong, M. Bai, J. Li, Z. Zhang, Y. Lai, Chem. Eng. J. 2022, 428, 131331.

[29]

S. Zhang, F. Sun, X. Du, X. Zhang, L. Huang, J. Ma, S. Dong, A. Hilger, I. Manke, L. Li, B. Xie, J. Li, Z. Hu, A. C. Komarek, H.-J. Lin, C.-Y. Kuo, C.-T. Chen, P. Han, G. Xu, Z. Cui, G. Cui, Energy Environ. Sci. 2023, 16, 2591.

[30]

G. Xu, M. Zhao, B. Xie, X. Wang, M. Jiang, P. Guan, P. Han, G. Cui, J. Power Sources 2021, 499, 229944.

[31]

Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao, J. Zheng, H. Li, Nano Energy 2022, 91, 106679.

[32]

Q. Lu, C. Wang, D. Bao, H. Duan, F. Zhao, K. D. Davis, Q. Zhang, R. Wang, S. Zhao, J. Wang, H. Huang, X. Sun, Energy Environ. Mater. 2022, 6, e12447.

[33]

Y.-C. Tseng, S.-H. Hsiang, C.-H. Tsao, H. Teng, S.-S. Hou, J.-S. Jan, J. Mater. Chem. A 2021, 9, 5796.

[34]

D. Chen, T. Zhu, M. Zhu, P. Kang, S. Yuan, Y. Li, J. Lan, X. Yang, G. Sui, Small Methods 2022, 6, 2201114.

[35]

D. Cai, X. Qi, J. Xiang, X. Wu, Z. Li, X. Luo, X. Wang, X. Xia, C. Gu, J. Tu, Chem. Eng. J. 2022, 435, 135030.

[36]

Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen, Z. Zeng, X. Liang, P. Paoprasert, Y. Yang, N. Hu, S. Song, Adv. Mater. 2022, 34, 2205560.

[37]

H. Wu, B. Tang, X. Du, J. Zhang, X. Yu, Y. Wang, J. Ma, Q. Zhou, J. Zhao, S. Dong, G. Xu, J. Zhang, H. Xu, G. Cui, L. Chen, Adv. Sci. 2020, 7, 2003370.

[38]

M. Xie, Y. Wu, Y. Liu, P. P. Yu, R. Jia, W. A. Goddard, T. Cheng, Mater. Today Energy 2021, 21, 100730.

[39]

H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu, N. Cai, Y. Liu, P. Zhang, M. Wang, Mater. Today Energy 2021, 20, 100623.

[40]

Q. Hou, H. Wang, F. Zhao, K. Zhang, H. Zhao, Y. Qi, Z. Ren, C. Shen, K. Xie, Energy Stor. Mater. 2021, 34, 640.

[41]

D. Penley, S. P. Vicchio, R. B. Getman, B. Gurkan, Front. Energy Res. 2021, 9, 725010.

[42]

Y. Li, H. Guo, RSC Adv. 2020, 10, 1981.

[43]

P. Hu, J. Li, J. Jin, X. Lin, X. Tan, ACS Appl. Mater. Interfaces 2022, 14, 21544.

[44]

H. Momose, T. Maeda, K. Hattori, T. Hirano, K. Ute, Polym. J. 2012, 44, 808.

[45]

Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, Chem. Soc. Rev. 2020, 49, 8790.

[46]

L. Li, G. Xu, S. Zhang, S. Dong, S. Wang, Z. Cui, X. Du, C. Wang, B. Xie, J. Du, X. Zhou, G. Cui, ACS Energy Lett. 2022, 7, 591.

[47]

X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, eaau9245.

[48]

F. She, A. Gao, P. Jiang, Y. Zhou, X. Zhang, M. Yang, L. Gong, J. Chen, X. Lu, F. Xie, Vacuum 2023, 211, 111893.

[49]

B. Zhao, J. Li, M. Guillaume, J. Dendooven, C. Detavernier, J. Energy Chem. 2022, 66, 295.

[50]

X. Ye, J. Liang, J. Hu, D. Wu, Y. Li, X. Ouyang, Q. Zhang, X. Ren, J. Liu, Chem. Eng. J. 2023, 455, 140846.

[51]

A. Mirsakiyeva, M. Ebadi, C. M. Araujo, D. Brandell, P. Broqvist, J. Kullgren, J. Phys. Chem. C 2019, 123, 22851.

[52]

W. Zha, J. Li, W. Li, C. Sun, Z. Wen, Chem. Eng. J. 2021, 406, 126754.

[53]

C. Fu, Y. Ma, S. Lou, C. Cui, L. Xiang, W. Zhao, P. Zuo, J. Wang, Y. Gao, G. Yin, J. Mater. Chem. A 2020, 8, 2066.

[54]

Q. Pan, D. Barbash, D. M. Smith, H. Qi, S. E. Gleeson, C. Y. Li, Adv. Energy Mater. 2017, 7, 1701231.

[55]

X. Li, Y. Zheng, C. Y. Li, Energy Storage Mater. 2020, 29, 273.

[56]

N. Wu, Y. R. Shi, S. Y. Lang, J. M. Zhou, J. Y. Liang, W. Wang, S. J. Tan, Y. X. Yin, R. Wen, Y. G. Guo, Angew. Chem. Int. Ed. 2019, 131, 18314.

[57]

Y. Luo, T. Li, H. Zhang, W. Liu, X. Zhang, J. Yan, H. Zhang, X. Li, Angew. Chem. Int. Ed. 2021, 60, 11718.

[58]

N. Ahmad, S. Sun, P. Yu, W. Yang, Adv. Funct. Mater. 2022, 32, 2201528.

[59]

V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J. R. Nair, Energy Environ. Sci. 2021, 14, 2708.

[60]

J. Lee, J. Kim, S. Kim, C. Jo, J. Lee, Mater. Adv. 2020, 1, 3143.

[61]

T. Deng, L. Cao, X. He, A.-M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, M. A. Schroeder, X. Fan, C. Wang, Chem 2021, 7, 3052.

[62]

X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, J. Solid State Electrochem. 2001, 6, 8.

[63]

H.-L. Guo, H. Sun, Z.-L. Jiang, C.-S. Luo, M.-Y. Gao, M.-H. Wei, J.-Y. Hu, W.-K. Shi, J.-Y. Cheng, H.-J. Zhou, J. Mater. Sci. 2019, 54, 4874.

[64]

W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, Y. Xia, RSC Adv. 2017, 7, 23494.

[65]

R. L. C. Akkermans, N. A. Spenley, S. H. Robertson, Mol. Simul. 2013, 39, 1153.

[66]

B. Delley, J. Chem. Phys. 1990, 92, 508.

[67]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[68]

B. Delley, J. Phys. Chem. A 2006, 110, 13632.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/