Nanodiamond-Assisted High Performance Lithium and Sodium Ions Co-Storage

Xiaochen Sun , Xuan Gao , Chang Su , Wei Cheng , Nan Gao , Xin Zhang , Mengmeng Gong , Haobo Dong , Yuhang Dai , Guanjie He , Hongdong Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12749

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12749 DOI: 10.1002/eem2.12749
RESEARCH ARTICLE

Nanodiamond-Assisted High Performance Lithium and Sodium Ions Co-Storage

Author information +
History +
PDF

Abstract

While lithium resources are scarce for high energy-dense lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), serving as an alternative, inherently suffer from low capacity and the high-cost use of non-graphite anodes. Combining Li- and Na-ions within a single battery system is expected to mitigate the shortcomings of both systems while leveraging their respective advantages. In this study, we developed and assembled a nanodiamonds (NDs)-assisted co-Li/Na-ion battery (ND–LSIB). This innovative battery system comprised a commercial graphite anode, an ND-modified polypropylene (DPP) separator, a hybrid lithium/sodium-based electrolyte, and a cathode. It is theoretically and experimentally demonstrated that the ND/Li co-insertion can serve as an ion-drill opening graphite layers and reconstructing graphite anodes into few-layered graphene with expanding interlayer space, achieving highly efficient Li/Na storage and the theoretical maximum of LiC6 for Li storage in graphite. In addition, ND is helpful for creating a LiF-/NaF-rich hybrid solid electrolyte interface with improved ionic mobility, mechanical strength, and reversibility. Consequently, ND–LSIBs have higher specific capacities ∼1.4 times the theoretical value of LIBs and show long-term cycling stability. This study proposes and realizes the concept of Li/Na co-storage in one ion battery with compatible high-performance, cost-effectiveness, and industrial prospects.

Cite this article

Download citation ▾
Xiaochen Sun, Xuan Gao, Chang Su, Wei Cheng, Nan Gao, Xin Zhang, Mengmeng Gong, Haobo Dong, Yuhang Dai, Guanjie He, Hongdong Li. Nanodiamond-Assisted High Performance Lithium and Sodium Ions Co-Storage. Energy & Environmental Materials, 2024, 7(6): e12749 DOI:10.1002/eem2.12749

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. K. Hou, X. Ji, K. Gaskell, P. F. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. S. Wang, Science 2021, 374, 172.

[2]

C. L. Zhao, Q. D. Wang, Z. P. Yao, J. L. Wang, B. Sánchez-Lengeling, F. X. Ding, X. G. Qi, Y. X. Lu, X. D. Bai, B. H. Li, H. Li, M. Wagemaker, L. Chen, Y. S. Hu, Science 2020, 370, 708.

[3]

M. Goktas, C. Bolli, E. J. Berg, P. Novák, K. Pollok, F. Langenhorst, M. V. Roeder, O. Lenchuk, D. Mollenhauer, P. Adelhelm, Adv. Energy Mater. 2018, 8, 1702724.

[4]

V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Energ. Environ. Sci. 2012, 5, 5884.

[5]

X. Gao, H. Wu, C. Su, C. Lu, Y. Dai, S. Zhao, X. Hu, F. Zhao, W. Zhang, I. P. Parkin, C. J. Carmalt, G. He, Energ. Environ. Sci. 2023, 16, 1364.

[6]

Y. Jin, P. M. L. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, B. E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, J.-G. Zhang, Nat. Energy 2022, 7, 718.

[7]

F. Xie, Z. Xu, A. C. S. Jensen, H. Au, Y. X. Lu, V. Araullo-Peters, A. J. Drew, Y. S. Hu, M. M. Titirici, Adv. Funct. Mater. 2019, 29, 1901072.

[8]

Y. Li, Y. S. Hu, X. Qi, X. Rong, H. Li, X. Huang, L. Chen, Energy Storage Mater. 2016, 5, 191.

[9]

J. L. Liu, Y. Q. Zhang, L. Zhang, F. X. Xie, A. Vasileff, S. Z. Qiao, Adv. Mater. 2019, 31, 1901261.

[10]

D. Y. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, Nat. Commun. 2013, 4, 2922.

[11]

J. Z. Guo, Y. Yang, D. S. Liu, X. L. Wu, B. H. Hou, W. L. Pang, K. C. Huang, J. P. Zhang, Z. M. Su, Adv. Energy Mater. 2018, 8, 1702504.

[12]

Q. Zhang, Y. Lu, L. Miao, Q. Zhao, K. Xia, J. Liang, S. L. Chou, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 14796.

[13]

H. X. Wang, Y. Cui, Carbon Energy 2019, 1, 13.

[14]

X. Zhai, J. Feng, X. Sun, C. Wang, X. Zhang, Z. Cui, J. Liu, H. Li, J. Alloys Compd. 2023, 933, 167621.

[15]

C. Wang, X. Sun, J. Zhang, X. Zhai, X. Zhang, Z. Li, H. Li, Chem. Eng. J. 2023, 466, 143191.

[16]

H. S. Hirsh, Y. Li, D. H. S. Tan, M. Zhang, E. Zhao, Y. S. Meng, Adv. Energy Mater. 2020, 10, 2001274.

[17]

C. Scordilis-Kelley, R. T. Carlin, J. Electrochem. Soc. 1993, 140, 1606.

[18]

Y. P. Song, H. D. Li, L. Y. Wang, D. C. Qiu, Y. B. Ma, K. Pei, G. T. Zou, K. F. Yu, Chem. Commun. 2016, 52, 10497.

[19]

J. L. Ma, F. L. Meng, Y. Yu, D. P. Liu, J. M. Yan, Y. Zhang, X. B. Zhang, Q. Jiang, Nat. Chem. 2019, 11, 64.

[20]

X. Gao, Y. Dai, C. Zhang, Y. Zhang, W. Zong, W. Zhang, R. Chen, J. Zhu, X. Hu, M. Wang, R. Chen, Z. Du, F. Guo, H. Dong, Y. Liu, H. He, S. Zhao, F. Zhao, J. Li, I. P. Parkin, C. J. Carmalt, G. He, Angew. Chem. Int. Ed. 2023, 62, e202300608.

[21]

M. Song, Z. Yi, R. Xu, J. Chen, J. Cheng, Z. Wang, Q. Liu, Q. Guo, L. Xie, C. Chen, Energy Storage Mater. 2022, 51, 620.

[22]

Z. Yuan, L. Wang, D. Li, J. Cao, W. Han, ACS Nano 2021, 15, 7439.

[23]

X. B. Cheng, M. Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X. Q. Zhang, Q. Zhang, J. Jiang, Y. Gogotsi, Nat. Commun. 2017, 8, 336.

[24]

S. T. Weng, S. Y. Wu, Z. P. Liu, G. J. Yang, X. Liu, X. Zhang, C. Zhang, Q. Y. Liu, Y. Huang, Y. J. Li, M. N. Ateş, D. Su, L. Gu, H. Li, L. Q. Chen, R. J. Xiao, Z. X. Wang, X. F. Wang, Carbon Energy 2022.

[25]

H. Kim, J. Hong, Y. U. Park, J. Kim, I. Hwang, K. Kang, Adv. Funct. Mater. 2015, 25, 534.

[26]

P. Luo, C. Zheng, J. He, X. Tu, W. P. Sun, H. Pan, Y. P. Zhou, X. H. Rui, B. Zhang, K. Huang, Adv. Funct. Mater. 2021, 32, 2107277.

[27]

T. Zhang, W. He, W. Zhang, T. Wang, P. Li, Z. Sun, X. Yu, Chem. Sci. 2020, 11, 8686.

[28]

Y. Deng, J. Zheng, Q. Zhao, J. Yin, P. Biswal, Y. Hibi, S. Jin, L. A. Archer, Small 2022, 18, 2203409.

[29]

J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, WIREs Comput. Mol. Sci. 2014, 4, 15.

[30]

K. P. C. Yao, J. S. Okasinski, K. Kalaga, I. A. Shkrob, D. P. Abraham, Energ. Environ. Sci. 2019, 12, 656.

[31]

Q. Liu, R. Xu, D. Mu, G. Tan, H. Gao, N. Li, R. Chen, F. Wu, Carbon Energy 2022.

[32]

X. Wu, B. Song, P. H. Chien, S. M. Everett, K. Zhao, J. Liu, Z. Du, Adv. Sci. 2021, 8, 2102318.

[33]

Z. L. Jian, Z. Y. Xing, C. Bommier, Z. F. Li, X. L. Ji, Adv. Energy Mater. 2016, 6, 1501874.

[34]

Y. J. Mai, D. Zhang, Y. Q. Qiao, C. D. Gu, X. L. Wang, J. P. Tu, J. Power Sources 2012, 216, 201.

[35]

Y. Wang, F. Liu, G. Fan, X. Qiu, J. Liu, Z. Yan, K. Zhang, F. Cheng, J. Chen, J. Am. Chem. Soc. 2021, 143, 2829.

[36]

F. A. Soto, P. Yan, M. H. Engelhard, A. Marzouk, C. Wang, G. Xu, Z. Chen, K. Amine, J. Liu, V. L. Sprenkle, F. El-Mellouhi, P. B. Balbuena, X. Li, Adv. Mater. 2017, 29, 1606860.

[37]

Y. P. Wu, X. K. Huang, L. Huang, J. H. Chen, Energy Environ. Mater. 2020, 4, 19.

[38]

H. A. Girard, T. Petit, S. Perruchas, T. Gacoin, C. Gesset, J. C. Arnault, P. Bergonzo, Phys. Chem. Chem. Phys. 2011, 13, 11517.

[39]

Y. S. Lin, G. D. Li, S. P. Mao, J. D. Chai, J. Chem. Theory Comput. 2013, 9, 263.

[40]

H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Storage Mater. 2021, 36, 147.

[41]

T. Lu, F. Chen, J. Comput Chem. 2012, 33, 580.

[42]

J. Y. Jiao, R. J. Xiao, M. Tian, Z. X. Wang, H. P. Chen, Electrochimica Acta 2018, 282, 205.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/