Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture

Jieke Jiang , Eline van Daatselaar , Hylke Wijnja , Tessa de Koning Gans , Michel Schellevis , Cornelis H. Venner , Derk W.F. Brilman , Claas Willem Visser

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12748

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12748 DOI: 10.1002/eem2.12748
RESEARCH ARTICLE

Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture

Author information +
History +
PDF

Abstract

The capture, regeneration, and conversion of CO2 from ambient air and flue gas streams are critical aspects of mitigating global warming. Solid sorbents for CO2 absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents. However, precisely tunable solid CO2 sorbents are difficult to produce. Here, we demonstrate the high-throughput production of hydrogel-based CO2-absorbing particles via liquid jetting. By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine (PEI) with a layer of suspension containing hydrophobic silica nanoparticles, monodisperse droplets with a silica nanoparticle coating layer was formed in the air. A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath. The droplets turn into mm-sized particles after thermal curing in the bath. The diameter, PEI content, and silica content of the particles were systematically varied, and their CO2 absorption was measured as a function of time. Steam regeneration of the particles enabled cyclic testing, revealing a CO2 absorption capacity of 6.5 ± 0.5 mol kg−1 solid PEI in pure CO2 environments and 0.7 ± 0.3 mol kg−1 solid PEI for direct air capture. Several thousands of particles were produced per second at a rate of around 0.5 kg per hour, with a single nozzle. This process can be further scaled by parallelization. The complete toolbox for the design, fabrication, testing, and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO2 capture.

Keywords

CO 2 capture / droplet / hydrogel / liquid jet / particle / steam regeneration

Cite this article

Download citation ▾
Jieke Jiang, Eline van Daatselaar, Hylke Wijnja, Tessa de Koning Gans, Michel Schellevis, Cornelis H. Venner, Derk W.F. Brilman, Claas Willem Visser. Scalable Jet-Based Fabrication of PEI-Hydrogel Particles for CO2 Capture. Energy & Environmental Materials, 2024, 7(6): e12748 DOI:10.1002/eem2.12748

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

“Global Climate Change: Evidence” NASA Global Climate Change and Global Warming: Vital Signs of the Planet Jet Propulsion Laboratory/National Aeronautics and Space Administration. https://climate.nasa.gov/vital-signs/carbon-dioxide/(Accessed January, 2022).

[2]

A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, S. R. Narayanan, J. Am. Chem. Soc. 2011, 133, 20164.

[3]

P. Bains, P. Psarras, J. Wilcox, Prog. Energy Combust. Sci. 2017, 63, 146.

[4]

G. T. Rochelle, Science 2009, 325, 1652.

[5]

P. H. M. Feron, Absorption-based post-combustion capture of carbon dioxide, Woodhead Publishing, Amsterdam 2016.

[6]

A. E. Poste, M. Grung, R. F. Wright, Sci. Total Environ. 2014, 481, 274.

[7]

D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.

[8]

G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.-H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, Energ. Environ. Sci. 2011, 4, 444.

[9]

S. Meth, A. Goeppert, G. K. S. Prakash, G. A. Olah, Energy Fuel 2012, 26, 3082.

[10]

X. Xu, C. Heath, B. Pejcic, C. D. Wood, J. Mater. Chem. A 2018, 6, 4829.

[11]

C. White, E. Adam, Y. Sabri, M. B. Myers, B. Pejcic, C. D. Wood, Ind. Engin. Chem. Res. 2021, 60, 14758.

[12]

D. Nagai, A. Suzuki, T. Kuribayashi, Macromol. Rapid Commun. 2011, 32, 404.

[13]

M. Yue, K. Imai, C. Yamashita, Y. Miura, Y. Hoshino, Macromol. Chem. Phys. 2017, 218, 1600570.

[14]

M. Yue, Y. Hoshino, Y. Ohshiro, K. Imamura, Y. Miura, Angew. Chem. Int. Ed. 2014, 53, 2654.

[15]

J. Gao, Y. Liu, Y. Terayama, K. Katafuchi, Y. Hoshino, G. Inoue, Chem. Eng. J. 2020, 401, 126059.

[16]

X. Xu, M. B. Myers, F. G. Versteeg, B. Pejcic, C. Heath, C. D. Wood, Chem. Commun. 2020, 56, 7151.

[17]

X. Xu, B. Pejcic, C. Heath, C. D. Wood, J. Mater. Chem. A 2018, 6, 21468.

[18]

R. D. Aines, C. M. Spaddaccini, E. B. Duoss, J. K. Stolaroff, J. Vericella, J. A. Lewis, G. Farthing, Energy Procedia 2013, 37, 219.

[19]

J. J. Vericella, S. E. Baker, J. K. Stolaroff, E. B. Duoss, J. O. Hardin, J. Lewicki, E. Glogowski, W. C. Floyd, C. A. Valdez, W. L. Smith, J. H. Satcher, W. L. Bourcier, C. M. Spadaccini, J. A. Lewis, R. D. Aines, Nat. Commun. 2015, 6, 6124.

[20]

S. Nawar, J. K. Stolaroff, C. Ye, H. Wu, D. T. Nguyen, F. Xin, D. A. Weitz, Lab Chip 2020, 20, 147.

[21]

S. Battat, D. A. Weitz, G. M. Whitesides, Lab Chip 2022, 22, 530.

[22]

A. R. Sujan, S. H. Pang, G. Zhu, C. W. Jones, R. P. Lively, ACS Sustain. Chem. Eng. 2019, 7, 5264.

[23]

C. W. Visser, T. Kamperman, L. P. Karbaat, D. Lohse, M. Karperien, Sci. Adv. 2018, 4, eaao1175.

[24]

T. Kamperman, V. D. Trikalitis, M. Karperien, C. W. Visser, J. Leijten, ACS Appl. Mater. Interfaces 2018, 10, 23433.

[25]

M. A. Sakwa-Novak, S. Tan, C. W. Jones, ACS Appl. Mater. Interfaces 2015, 7, 24748.

[26]

N. K. Sandhu, D. Pudasainee, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 2016, 55, 2210.

[27]

X. Shen, H. Du, R. H. Mullins, R. R. Kommalapati, Energ. Technol. 2017, 5, 822.

[28]

J. Jiang, A. T. Poortinga, Y. Liao, T. Kamperman, C. H. Venner, C. W. Visser, Adv. Mater. 2023, 35, 2208894.

[29]

E. J. Kim, R. L. Siegelman, H. Z. H. Jiang, A. C. Forse, J.-H. Lee, J. D. Martell, P. J. Milner, J. M. Falkowski, J. B. Neaton, J. A. Reimer, S. C. Weston, J. R. Long, Science 2020, 369, 392.

[30]

J. M. Kolle, M. Fayaz, A. Sayari, Chem. Rev. 2021, 121, 7280.

[31]

J. Jiang, G. Shea, P. Rastogi, T. Kamperman, C. H. Venner, C. W. Visser, Adv. Mater. 2021, 33, 2006336.

[32]

J. K. Nunes, S. S. H. Tsai, J. Wan, H. A. Stone, J. Phys. D Appl. Phys. 2013, 46, 114002.

[33]

M. Yew, Y. Ren, K. S. Koh, C. Sun, C. Snape, Y. Yan, Energy Procedia 2019, 160, 443.

[34]

P.-Y. Gu, F. Zhou, G. Xie, P. Y. Kim, Y. Chai, Q. Hu, S. Shi, Q.-F. Xu, F. Liu, J.-M. Lu, T. P. Russell, Angew. Chem. Int. Ed. 2021, 60, 8694.

[35]

Y. Chai, J. Hasnain, K. Bahl, M. Wong, D. Li, P. Geissler, P. Y. Kim, Y. Jiang, P. Gu, S. Li, D. Lei, B. A. Helms, T. P. Russell, P. D. Ashby, Sci. Adv. 2020, 6, eabb8675.

[36]

A. R. Studart, H. C. Shum, D. A. Weitz, J. Phys. Chem. B 2009, 113, 3914.

[37]

D. Cai, P. S. Clegg, Chem. Commun. 2015, 51, 16984.

[38]

X. Li, Y. Xue, P. Lv, H. Lin, F. Du, Y. Hu, J. Shen, H. Duan, Soft Matter 2016, 12, 1655.

[39]

F. Farhang, A. V. Nguyen, K. B. Sewell, Energy Fuel 2014, 28, 7025.

[40]

B. O. Carter, W. Wang, D. J. Adams, A. I. Cooper, Langmuir 2010, 26, 3186.

[41]

N. N. Nguyen, A. V. Nguyen, Energy Fuel 2017, 31, 10311.

[42]

J. Bao, W.-H. Lu, J. Zhao, X. T. Bi, Carbon Res. Convers. 2018, 1, 183.

[43]

R. Rodríguez-Mosqueda, E. A. Bramer, G. Brem, Chem. Eng. Sci. 2018, 189, 114.

[44]

B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee, H. K. Song, Korean J. Chem. Eng. 2001, 18, 220.

[45]

F. Foeth, M. Andersson, H. Bosch, G. Aly, T. Reith, Sep. Sci. Technol. 1994, 29, 93.

[46]

V. R. Choudhary, S. Mayadevi, A. P. Singh, J. Chem. Soc. Faraday Trans. 1995, 91, 2935.

[47]

P. J. E. Harlick, F. H. Tezel, Sep. Purif. Technol. 2003, 33, 199.

[48]

S. Lee, T. P. Filburn, M. Gray, J.-W. Park, H.-J. Song, Ind. Eng. Chem. Res. 2008, 47, 7419.

[49]

P. D. Jadhav, R. V. Chatti, R. B. Biniwale, N. K. Labhsetwar, S. Devotta, S. S. Rayalu, Energy Fuel 2007, 21, 3555.

[50]

J. H. Drese, S. Choi, R. P. Lively, W. J. Koros, D. J. Fauth, M. L. Gray, C. W. Jones, Adv. Funct. Mater. 2009, 19, 3821.

[51]

A. C. C. Chang, S. S. C. Chuang, M. Gray, Y. Soong, Energy Fuel 2003, 17, 468.

[52]

G. Qi, L. Fu, B. H. Choi, E. P. Giannelis, Energ. Environ. Sci. 2012, 5, 7368.

[53]

M. L. Sarazen, M. A. Sakwa-Novak, E. W. Ping, C. W. Jones, ACS Sustain. Chem. Eng. 2019, 7, 7338.

[54]

J. Wang, H. Chen, H. Zhou, X. Liu, W. Qiao, D. Long, L. Ling, J. Environ. Sci. 2013, 25, 124.

[55]

G.-J. Shin, K. Rhee, S.-J. Park, Int. J. Hydrogen Energy 2016, 41, 14351.

[56]

H. He, L. Zhuang, S. Chen, H. Liu, Q. Li, Green Chem. 2016, 18, 5859.

[57]

J.-T. Anyanwu, Y. Wang, R. T. Yang, Chem. Eng. J. 2022, 427, 131561.

[58]

Y. J. Min, A. Ganesan, M. J. Realff, C. W. Jones, ACS Appl. Mater. Interfaces 2022, 14, 40992.

[59]

L. B. Hamdy, A. Gougsa, W. Y. Chow, J. E. Russell, E. García-Díez, V. Kulakova, S. Garcia, A. R. Barron, M. Taddei, E. Andreoli, Mater. Adv. 2022, 3, 3174.

[60]

A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 2012, 51, 1438.

[61]

A. M. Varghese, G. N. Karanikolos, Int. J. Greenhouse Gas Contr. 2020, 96, 103005.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/