MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting

Yanqi Yuan , Kun Wang , Boan Zhong , Dongkun Yu , Fei Ye , Jing Liu , Joydeep Dutta , Peng Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12747

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12747 DOI: 10.1002/eem2.12747
RESEARCH ARTICLE

MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting

Author information +
History +
PDF

Abstract

Transition metal phosphides (TMPs) have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis. Elemental doping and morphology control are effective approaches to further improve the performance of TMPs. Herein, Fe-doped CoP nanoframes (Fe-CoP NFs) with specific open cage configuration were designed and synthesized. The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, overwhelming most transition metal phosphides. For overall water splitting, the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm−2, much superior to what is observed for the classical nanocubic structures. Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference. The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites, reduced kinetic energy barrier, and preferable *O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations. Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.

Keywords

electrocatalysis / hollow structure / iron-doped cobalt phosphide / MOF / overall water splitting

Cite this article

Download citation ▾
Yanqi Yuan, Kun Wang, Boan Zhong, Dongkun Yu, Fei Ye, Jing Liu, Joydeep Dutta, Peng Zhang. MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting. Energy & Environmental Materials, 2024, 7(6): e12747 DOI:10.1002/eem2.12747

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. S. Faber, S. Jin, Energy Environ. Sci. 2014, 7, 3519.

[2]

Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.

[3]

Y. Gong, J. Yao, P. Wang, Z. Li, H. Zhou, C. Xu, Chin. J. Chem. Eng. 2022, 43, 282.

[4]

J. Dutta, Esteban Alejandro Toledo Carrillo, SE Patent 2151488-0. 2023.

[5]

X.-P. Li, C. Huang, W.-K. Han, T. Ouyang, Z.-Q. Liu, Chin. Chem. Lett. 2021, 32, 2597.

[6]

Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Adv. Energy Mater. 2020, 10, 1903120.

[7]

H. B. Wu, X. W. (David) Lou, Sci. Adv. 2017, 3, eaap9252.

[8]

J. Shan, T. Ling, K. Davey, Y. Zheng, S. Qiao, Adv. Mater. 2019, 31, 1900510.

[9]

S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A. M. Asiri, Q. Wu, X. Sun, J. Mater. Chem. A 2020, 8, 19729.

[10]

Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.

[11]

Z. Pu, T. Liu, I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, P. Ji, W. Hu, J. Liu, S. Mu, Adv. Funct. Mater. 2020, 30, 2004009.

[12]

C.-J. Huang, H.-M. Xu, T.-Y. Shuai, Q.-N. Zhan, Z.-J. Zhang, G.-R. Li, Appl Catal B 2023, 325, 122313.

[13]

D. Liu, G. Xu, H. Yang, H. Wang, B. Y. Xia, Adv. Funct. Mater. 2023, 33, 2208358.

[14]

S. Yang, J.-Y. Zhu, X.-N. Chen, M.-J. Huang, S.-H. Cai, J.-Y. Han, J.-S. Li, Appl Catal B 2022, 304, 120914.

[15]

M. Jiang, J. Li, X. Cai, Y. Zhao, L. Pan, Q. Cao, D. Wang, Y. Du, Nanoscale 2018, 10, 19774.

[16]

J. Chen, Y. Zhang, H. Ye, J.-Q. Xie, Y. Li, C. Yan, R. Sun, C.-P. Wong, ACS Appl. Energy Mater. 2019, 2, 2734.

[17]

C. Ray, S. C. Lee, B. Jin, A. Kundu, J. H. Park, S. C. Jun, ACS Sustain. Chem. Eng. 2018, 6, 6146.

[18]

H. Zhang, W. Zhou, J. Dong, X. F. Lu, X. W. (David) Lou, Energy Environ. Sci. 2019, 12, 3348.

[19]

Y. Lu, Y. Deng, S. Lu, Y. Liu, J. Lang, X. Cao, H. Gu, Nanoscale 2019, 11, 21259.

[20]

J. Chen, J. Liu, J.-Q. Xie, H. Ye, X.-Z. Fu, R. Sun, C.-P. Wong, Nano Energy 2019, 56, 225.

[21]

K. Wang, Y. Si, Z. Lv, T. Yu, X. Liu, G. Wang, G. Xie, L. Jiang, Int. J. Hydrog. Energy 2020, 45, 2504.

[22]

R. Xiang, Y. Duan, C. Tong, L. Peng, J. Wang, S. S. A. Shah, T. Najam, X. Huang, Z. Wei, Electrochim. Acta 2019, 302, 45.

[23]

Y. Zhang, X. Zheng, X. Guo, J. Zhang, A. Yuan, Y. Du, F. Gao, Appl Catal B 2023, 336, 122891.

[24]

H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414.

[25]

L.-M. Cao, J. Zhang, L.-W. Ding, Z.-Y. Du, C.-T. He, J. Energy Chem. 2022, 68, 494.

[26]

G. Zhang, Y. Li, X. Xiao, Y. Shan, Y. Bai, H.-G. Xue, H. Pang, Z. Tian, Q. Xu, Nano Lett. 2021, 21, 3016.

[27]

C. Xuan, J. Zhang, J. Wang, D. Wang, Chem. Asian J. 2020, 15, 958.

[28]

Y. Li, J. Hu, K. Yang, B. Cao, Z. Li, L. Yang, F. Pan, Mater. Today Energy 2019, 14, 100332.

[29]

J. Nai, B. Y. Guan, L. Yu, X. W. (David) Lou, Sci. Adv. 2017, 3, e1700732.

[30]

X. Zhou, Y. Tang, X. Xu, X. Zhou, G. Zhao, M. Zhou, G. Wan, G. Wang, Mater. Today Nano 2021, 14, 100116.

[31]

X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li, Z. Chang, J. Mater. Chem. A 2016, 4, 51.

[32]

Y. Lian, H. Sun, X. Wang, P. Qi, Q. Mu, Y. Chen, J. Ye, X. Zhao, Z. Deng, Y. Peng, Chem. Sci. 2019, 10, 464.

[33]

K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng, Y. Zhu, ACS Nano 2018, 12, 158.

[34]

D. P. Domonov, S. I. Pechenyuk, Y. P. Semushina, J. Therm. Anal. Calorim. 2021, 146, 629.

[35]

Y. Li, X. Jing, Q. Li, Y. Shen, Q. Fang, J. Colloid Interface Sci. 2022, 622, 390.

[36]

X. Luo, P. Ji, P. Wang, X. Tan, L. Chen, S. Mu, Adv. Sci. 2022, 9, 2104846.

[37]

D. Xiong, C. Lu, C. Chen, J. Wang, Y. Kong, T. Liu, S. Ying, F.-Y. Yi, J. Power Sources 2022, 520, 230884.

[38]

E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. (David) Lou, Energy Environ. Sci. 2018, 11, 872.

[39]

J.-Y. Xie, Z.-Z. Liu, J. Li, L. Feng, M. Yang, Y. Ma, D.-P. Liu, L. Wang, Y.-M. Chai, B. Dong, J. Energy Chem. 2020, 48, 328.

[40]

X. Hu, S. Zhang, J. Sun, L. Yu, X. Qian, R. Hu, Y. Wang, H. Zhao, J. Zhu, Nano Energy 2019, 56, 109.

[41]

X. Ding, H. Huang, Q. Wan, X. Guan, Y. Fang, S. Lin, D. Chen, Z. Xie, J. Energy Chem. 2021, 62, 415.

[42]

A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819.

[43]

D. Wyrzykowski, L. Chmurzyński, J. Therm. Anal. Calorim. 2010, 102, 61.

[44]

S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 2020, 10, 9086.

[45]

L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Angew. Chem. Int. Ed. 2021, 60, 18821.

[46]

S. Geng, F. Tian, M. Li, X. Guo, Y. Yu, W. Yang, Y. Hou, J. Mater. Chem. A 2021, 9, 8561.

[47]

J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, S. Guo, Adv. Mater. 2017, 29, 1703798.

[48]

Y. Li, S. Li, J. Hu, Y. Zhang, Y. Du, X. Han, X. Liu, P. Xu, J. Energy Chem. 2021.

[49]

J. Shi, F. Qiu, W. Yuan, M. Guo, Z.-H. Lu, Chem. Eng. J. 2021, 403, 126312.

[50]

E. Hu, J. Ning, D. Zhao, C. Xu, Y. Lin, Y. Zhong, Z. Zhang, Y. Wang, Y. Hu, Small 2018, 14, 1704233.

[51]

F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc. 2018, 140, 7748.

[52]

A. Dutta, N. Pradhan, J. Phys. Chem. Lett. 2017, 8, 144.

[53]

J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal. 2015, 5, 6874.

[54]

D. Xiong, X. Wang, W. Li, L. Liu, Chem. Commun. 2016, 52, 8711.

[55]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[56]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[57]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[58]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[59]

T.-W. Wang, T.-L. Wang, W.-J. Chou, L.-F. Wu, S.-H. Lin, Phys. Chem. Chem. Phys. 2021, 23, 2305.

[60]

D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/