MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting
Yanqi Yuan , Kun Wang , Boan Zhong , Dongkun Yu , Fei Ye , Jing Liu , Joydeep Dutta , Peng Zhang
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12747
MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting
Transition metal phosphides (TMPs) have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis. Elemental doping and morphology control are effective approaches to further improve the performance of TMPs. Herein, Fe-doped CoP nanoframes (Fe-CoP NFs) with specific open cage configuration were designed and synthesized. The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, overwhelming most transition metal phosphides. For overall water splitting, the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm−2, much superior to what is observed for the classical nanocubic structures. Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference. The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites, reduced kinetic energy barrier, and preferable *O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations. Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
electrocatalysis / hollow structure / iron-doped cobalt phosphide / MOF / overall water splitting
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |