2.5 µm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries

Donghao Xie , Zekun Wang , Xin Ma , Yuchen Feng , Xiaomin Tang , Qiao Gu , Yonghong Deng , Ping Gao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12746

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12746 DOI: 10.1002/eem2.12746
RESEARCH ARTICLE

2.5 µm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries

Author information +
History +
PDF

Abstract

Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 µm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu2O, was prepared by selective synthesis of Cu2O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ∼10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu2O with symmetric Cu2O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.

Keywords

in situ SEI / lithium deposition regulation / separator / ultrastrong / ultrathin

Cite this article

Download citation ▾
Donghao Xie, Zekun Wang, Xin Ma, Yuchen Feng, Xiaomin Tang, Qiao Gu, Yonghong Deng, Ping Gao. 2.5 µm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries. Energy & Environmental Materials, 2024, 7(6): e12746 DOI:10.1002/eem2.12746

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 11, 2000804.

[2]

C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Adv. Mater. 2017, 29, 1701169.

[3]

M. Arakawa, S.-I. Tobishima, Y. Nemoto, M. Ichimura, J.-I. Yamaki, J. Power Sources 1993, 43, 27.

[4]

J. Chazalviel, Phys. Rev. A 1990, 42, 7355.

[5]

X. S. Yin, W. Tang, I. D. Jung, K. C. Phua, S. Adams, S. W. Lee, G. W. Zheng, Nano Energy 2018, 50, 659.

[6]

X. Wang, W. Zeng, L. Hong, W. W. Xu, H. K. Yang, F. Wang, H. G. Duan, M. Tang, H. Q. Jiang, Nat. Energy 2018, 3, 227.

[7]

H. Liu, X. B. Cheng, R. Xu, X. Q. Zhang, C. Yan, J. Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254.

[8]

S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia, J. Li, Adv. Mater. 2018, 30, 1706375.

[9]

K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69.

[10]

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496.

[11]

X. Qiu, M. Yu, G. Fan, J. Liu, Y. Wang, K. Zhao, J. Ding, F. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 6367.

[12]

Y. Liu, S. Zhang, X. Qin, F. Kang, G. Chen, B. Li, Nano Lett. 2019, 19, 4601.

[13]

Y. Cai, B. Qin, C. Li, X. Si, J. Cao, X. Zheng, J. Qi, Chem. Eng. J. 2022, 433, 133689.

[14]

J. Yan, F. Q. Liu, J. Gao, W. D. Zhou, H. Huo, J. J. Zhou, L. Li, Adv. Funct. Mater. 2021, 31, 2007255.

[15]

H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M. H. Ryou, H. S. Jin, H. T. Kim, J. Liu, W. Xu, J. G. Zhang, Adv. Funct. Mater. 2017, 27, 1704391.

[16]

P. Gao, Q. Gu, J. Li, R. Li, Q. Zhang, L.-T. Weng, T. Zhao, T. X. Yu, M. Shao, K. Amine, arXiv preprint arXiv:2011 2020, 11414.

[17]

R. Li, P. Gao, Global Chall. 2017, 1, 1700020.

[18]

X. Ma, D. Xie, J. Wang, Z. Wang, Q. Gu, Y. Deng, P. Gao, J. Mater. Chem. A 2023, 1, 509.

[19]

M. Milad, N. Zreiba, F. Elhalouani, C. Baradai, J. Mater. Process. Technol. 2008, 203, 80.

[20]

D. E. J. Armstrong, A. J. Wilkinson, S. G. Roberts, J. Mater. Res. 2011, 24, 3268.

[21]

S. R. Jian, G. J. Chen, W. M. Hsu, Dent. Mater. 2013, 6, 4505.

[22]

Z. Hong, V. Viswanathan, ACS Energy Lett. 2018, 3, 1737.

[23]

A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.

[24]

S. Wang, X. Yin, D. Liu, Y. Liu, X. Qin, W. Wang, R. Zhao, X. Zeng, B. Li, J. Mater. Chem. A 2020, 8, 18348.

[25]

M. He, R. Guo, G. M. Hobold, H. Gao, B. M. Gallant, Proc. Natl Acad. Sci. USA 2020, 117, 73.

[26]

J. Steiger, D. Kramer, R. Mönig, Electrochim. Acta 2014, 136, 529.

[27]

J. Steiger, D. Kramer, R. Mönig, J. Power Sources 2014, 261, 112.

[28]

H. Gan, R. Wang, J. Wu, H. Chen, R. Li, H. Liu, ACS Appl. Mater. Interfaces 2021, 13, 37162.

[29]

Y. Y. Feng, C. F. Zhang, B. Li, S. Z. Xiong, J. X. Song, J. Mater. Chem. A 2019, 7, 6090.

[30]

X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1903645.

[31]

L. Liu, P. Guan, ECS Trans. 2019, 89, 101.

[32]

J.-I. Yamaki, S.-I. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto, M. Arakawa, J. Power Sources 1998, 74, 219.

[33]

A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Nano Energy 2017, 32, 271.

[34]

F. Sun, R. Moroni, K. Dong, H. Markötter, D. Zhou, A. Hilger, L. Zielke, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ACS Energy Lett. 2017, 2, 94.

[35]

A. Aryanfar, D. J. Brooks, A. J. Colussi, M. R. Hoffmann, Phys. Chem. Chem. Phys. 2014, 16, 24965.

[36]

W. Wang, F. Hao, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2020, 12, 556.

[37]

C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, J. Power Sources 1999, 81, 925.

[38]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.

[39]

S. Cruz-Manzo, P. Greenwood, J. Electrochem. Soc. 2020, 167, 140507.

[40]

Y. An, Y. Tian, Q. Man, H. Shen, C. Liu, Y. Qian, S. Xiong, J. Feng, Y. Qian, ACS Nano 2022, 16, 6755.

[41]

H. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2019, 141, 4624.

[42]

Y. Jie, X. Ren, R. Cao, W. Cai, S. Jiao, Adv. Funct. Mater. 2020, 30, 1910777.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/