Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries

Xinyu Zhang , Daobin Mu , Shijie Lu , Yuanxing Zhang , Yuxiang Zhang , Zhuolin Yang , Zhikun Zhao , Borong Wu , Feng Wu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12744

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12744 DOI: 10.1002/eem2.12744
RESEARCH ARTICLE

Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

With the widespread use of lithium-ion batteries in electric vehicles, energy storage, and mobile terminals, there is an urgent need to develop cathode materials with specific properties. However, existing material control synthesis routes based on repetitive experiments are often costly and inefficient, which is unsuitable for the broader application of novel materials. The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials. Here, we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model. The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies, helping to shorten the experimental duration and costs. After the model-guided design synthesis, cathode materials with different morphological characteristics can be obtained, and the best shows a high discharge capacity of 206 mAh g−1 at 0.1C and 83% capacity retention after 200 cycles. This work provides guidance for designing cathode materials for lithium-ion batteries, which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.

Keywords

design / digital image / lithium-ion batteries / machine learning / NCM cathode

Cite this article

Download citation ▾
Xinyu Zhang, Daobin Mu, Shijie Lu, Yuanxing Zhang, Yuxiang Zhang, Zhuolin Yang, Zhikun Zhao, Borong Wu, Feng Wu. Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(6): e12744 DOI:10.1002/eem2.12744

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[2]

J. M. Tarascon, M. Armand, Nature 2001, 414, 359.

[3]

A. Manthiram, Nat. Commun. 2020, 11, 1550.

[4]

W. Li, E. M. Erickson, A. Manthiram, Nat. Energy 2020, 5, 26.

[5]

H. Dong, G. M. Koenig, CrystEngComm 2020, 22, 1514.

[6]

R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.

[7]

H. Vikström, S. Davidsson, M. Höök, Appl. Energy 2013, 110, 252.

[8]

W. Du, A. Gupta, X. Zhang, A. M. Sastry, W. Shyy, Int. J. Heat Mass Transf. 2010, 53, 3552.

[9]

L. Wang, T. Liu, T. Wu, J. Lu, Nature 2022, 611, 61.

[10]

N. Zaker, C. Geng, D. Rathore, I. Hamam, N. Chen, P. Xiao, C. Yang, J. R. Dahn, G. A. Botton, Adv. Funct. Mater. 2023, 33, 2211178.

[11]

C. Geng, D. Rathore, D. Heino, N. Zhang, I. Hamam, N. Zaker, G. A. Botton, R. Omessi, N. Phattharasupakun, T. Bond, C. Yang, J. R. Dahn, Adv. Energy Mater. 2022, 12, 2103067.

[12]

H. H. Ryu, K. J. Park, D. R. Yoon, A. Aishova, C. S. Yoon, Y. K. Sun, Adv. Energy Mater. 2019, 9, 1902698.

[13]

Q. Xie, W. Li, A. Manthiram, Chem. Mater. 2019, 31, 938.

[14]

C. H. Jung, D. H. Kim, D. Eum, K. H. Kim, J. Choi, J. Lee, H. H. Kim, K. Kang, S. H. Hong, Adv. Funct. Mater. 2021, 31, 2010095.

[15]

S. Yin, W. Deng, J. Chen, X. Gao, G. Zou, H. Hou, X. Ji, Nano Energy 2021, 83, 105854.

[16]

H. H. Ryu, H. W. Lim, S. G. Lee, Y. K. Sun, Energy Storage Mater. 2023, 59, 102771.

[17]

J. P. Robinson, G. M. Koenig, Powder Technol. 2015, 284, 225.

[18]

W. Hua, Z. Wu, M. Chen, M. Knapp, X. Guo, S. Indris, J. R. Binder, N. N. Bramnik, B. Zhong, H. Guo, S. Chou, Y. M. Kang, H. Ehrenberg, J. Mater. Chem. A 2017, 5, 25391.

[19]

Y. Li, J. He, L. Luo, X. Li, Z. Chen, Y. Zhang, L. Deng, P. Dong, S. Yang, K. Wu, D. Wang, Y. Zhang, J. Duan, ACS Appl. Energy Mater. 2022, 5, 6302.

[20]

S. W. Lee, H. Kim, M. S. Kim, H. C. Youn, K. Kang, B. W. Cho, K. C. Roh, K. B. Kim, J. Power Sources 2016, 315, 261.

[21]

X. Xu, H. Huo, J. Jian, L. Wang, H. Zhu, S. Xu, X. He, G. Yin, C. Du, X. Sun, Adv. Energy Mater. 2019, 9, 1803963.

[22]

Y. Han, X. Shan, G. Zhu, Y. Wang, Q. Qu, H. Zheng, Electrochim. Acta 2020, 329, 135057.

[23]

P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 2019, 123, 3291.

[24]

M. Noh, J. Cho, J. Electrochem. Soc. 2013, 160, A105.

[25]

W. Hua, W. Liu, M. Chen, S. Indris, Z. Zheng, X. Guo, M. Bruns, T. H. Wu, Y. Chen, B. Zhong, S. Chou, Y. M. Kang, H. Ehrenberg, Electrochim. Acta 2017, 232, 123.

[26]

X. Yang, X. Huang, H. Shi, P. Dong, D. Wang, J. Duan, Y. Zhang, J. Energy Chem. 2021, 53, 379.

[27]

P. Gao, S. Wang, Z. Liu, Y. Jiang, W. Zhou, Y. Zhu, Solid State Ionics 2020, 357, 115504.

[28]

Y. Ding, D. Mu, B. Wu, Z. Zhao, R. Wang, Ceram. Int. 2020, 46, 9436.

[29]

A. van Bommel, J. R. Dahn, Chem. Mater. 2009, 21, 1500.

[30]

Y. Yang, S. Xu, M. Xie, Y. He, G. Huang, Y. Yang, J. Alloys Compd. 2015, 619, 846.

[31]

M. L. Para, M. Alidoost, M. Shiea, G. Boccardo, A. Buffo, A. A. Barresi, D. Marchisio, Chem. Eng. Sci. 2022, 254, 117634.

[32]

M. Mishra, J. Martinsson, M. Rantatalo, K. Goebel, Reliab. Eng. Syst. Saf. 2018, 172, 25.

[33]

S. Tamilselvi, S. Gunasundari, N. Karuppiah, A. Razak RK, S. Madhusudan, V. M. Nagarajan, T. Sathish, M. Z. M. Shamim, C. A. Saleel, A. Afzal, Sustain. For. 2021, 13, 10042.

[34]

S. C. Kim, S. T. Oyakhire, C. Athanitis, J. Wang, Z. Zhang, W. Zhang, D. T. Boyle, M. S. Kim, Z. Yu, X. Gao, T. Sogade, E. Wu, J. Qin, Z. Bao, S. F. Bent, Y. Cui, Proc. Natl Acad. Sci. USA 2023, 120, e2214357120.

[35]

A. Kilic, D. Eroglu, R. Yildirim, J. Electrochem. Soc. 2021, 168, 090544.

[36]

A. D. Sendek, E. D. Cubuk, E. R. Antoniuk, G. Cheon, Y. Cui, E. J. Reed, Chem. Mater. 2019, 31, 342.

[37]

H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, K. F. Jensen, ACS Cent. Sci. 2018, 4, 1465.

[38]

J. W. Lee, W. B. Park, J. H. Lee, S. P. Singh, K. S. Sohn, Nat. Commun. 2020, 11, 86.

[39]

A. Kilic, Ç. Odabaşı, R. Yildirim, D. Eroglu, Chem. Eng. J. 2020, 390, 124117.

[40]

C. P. Haas, M. Lübbesmeyer, E. H. Jin, M. A. McDonald, B. A. Koscher, N. Guimond, L. di Rocco, H. Kayser, S. Leweke, S. Niedenführ, R. Nicholls, E. Greeves, D. M. Barber, J. Hillenbrand, G. Volpin, K. F. Jensen, ACS Cent. Sci. 2023, 9, 307.

[41]

C. Zhang, M. Dong, K. Ota, IEEE Comput. Intell. Mag. 2020, 15, 32.

[42]

X. Liu, A. Liu, T. Wang, K. Ota, M. Dong, Y. Liu, Z. Cai, J Parallel Distrib Comput 2020, 135, 140.

[43]

A. Chen, X. Zhang, Z. Zhou, InfoMat 2020, 2, 553.

[44]

Y. Qiu, X. Zhang, Y. Tian, Z. Zhou, Chin. J. Struct. Chem. 2023, 42, 100118.

[45]

Lange’s Handbook of Chemistry, 16th ed., McGraw-Hill Education, New York, NY 2005.

[46]

Q. P. Mayra, W. S. Kim, Cryst. Growth Des. 2015, 15, 1726.

[47]

M. Shiea, A. Querio, A. Buffo, G. Boccardo, D. Marchisio, Chem. Eng. Res. Des. 2022, 177, 461.

[48]

Z. Feng, P. Barai, J. Gim, K. Yuan, Y. A. Wu, Y. Xie, Y. Liu, V. Srinivasan, J. Electrochem. Soc. 2018, 165, A3077.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/