Accelerating the Screening of Modified MA2Z4 Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis

Jingnan Zheng , Shibin Wang , Shengwei Deng , Zihao Yao , Junhua Hu , Jianguo Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12743

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12743 DOI: 10.1002/eem2.12743
RESEARCH ARTICLE

Accelerating the Screening of Modified MA2Z4 Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis

Author information +
History +
PDF

Abstract

Machine learning (ML) integrated with density functional theory (DFT) calculations have recently been used to accelerate the design and discovery of single-atom catalysts (SACs) by establishing deep structure–activity relationships. The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods, leading to the limitation of the potential application range. Aiming to the structural properties of several typical two-dimensional MA2Z4-based single-atom systems (bare MA2Z4 and metal single-atom doped/supported MA2Z4), an improved crystal graph convolutional neural network (CGCNN) classification model was employed, instead of the traditional machine learning regression model, to address the challenge of incompatibility in the studied systems. The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer, surface layer, and bulk layer (ASB-GCNN). Through ML and DFT calculations, five potential single-atom hydrogen evolution reaction (HER) catalysts were screened from chemical space of 600 MA2Z4-based materials, especially V1/HfSn2N4(S) with high stability and activity (ΔGH* is 0.06 eV). Further projected density of states (pDOS) analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz2 orbital coincided with the H-s orbital around the energy level of −2.50 eV, and orbital analysis confirmed the formation of σ bonds. This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations.

Keywords

graph convolutional neural network / hydrogen evolution reaction / modified MA 2Z 4 substrate / single atom catalyst

Cite this article

Download citation ▾
Jingnan Zheng, Shibin Wang, Shengwei Deng, Zihao Yao, Junhua Hu, Jianguo Wang. Accelerating the Screening of Modified MA2Z4 Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis. Energy & Environmental Materials, 2024, 7(6): e12743 DOI:10.1002/eem2.12743

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Peng, Y. Mi, H. Bao, Y. Liu, D. Qi, Y. Qiu, L. Zhuo, S. Zhao, J. Sun, X. Tang, J. Luo, X. Liu, Nano Energy 2020, 78, 105321.

[2]

J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc. 2018, 140, 3876.

[3]

K. L. Svane, M. Reda, T. Vegge, H. A. Hansen, ChemSusChem 2019, 12, 5133.

[4]

Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang, L. Gu, L. Zheng, L. Li, Q. Wu, D. J. Singh, D. Matsumura, T. Tsuji, Y. Cui, J. Zhao, W. Zheng, Chem 2021, 7, 436.

[5]

J. Liu, X. Kong, L. Zheng, X. Guo, X. Liu, J. Shui, ACS Nano 2020, 14, 1093.

[6]

Y. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. Chen, D. Sun, X. Chen, H. Cheng, W. Ren, Science 2020, 369, 670.

[7]

J. Zheng, X. Sun, J. Hu, S. Wang, Z. Yao, S. Deng, X. Pan, Z. Pan, J. Wang, ACS Appl. Mater. Interfaces 2021, 13, 50878.

[8]

J. Wei, L. Xu, W. Wu, F. Sun, W. B. Zhang, Sci. China Chem. 2022, 65, 486.

[9]

S. Zhang, S. Lu, P. Zhang, J. Tian, L. Shi, C. Ling, Q. Zhou, J. Wang, Energy Environ. Mater. 2023, 6, e12304.

[10]

M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand, A. Hajibabaei, A. Abbas, G. Lee, K. S. Kim, J. Mater. Chem. A 2022, 10, 6679.

[11]

M. Karthikeyan, D. M. Mahapatra, A. S. A. Razak, A. A. M. Abahussain, B. Ethiraj, L. Singh, Catal. Rev. 2022.

[12]

R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 28251.

[13]

B. R. Sutherland, Joule 2019.

[14]

G. Gao, A. P. O’Mullane, A. Du, ACS Catal. 2017, 7, 494.

[15]

C. Hu, H. Liu, Y. Liu, J. Chen, Y. Li, L. Dai, Nano Energy 2019, 63, 103874.

[16]

M. Pandey, K. S. Thygesen, J. Phys. Chem. C 2017, 121, 13593.

[17]

L. Ge, H. Yuan, Y. Min, L. Li, S. Chen, L. Xu, W. A. Goddard, J. Phys. Chem. Lett. 2020, 11, 869.

[18]

L. Liu, A. Corma, Trends Chem. 2020, 2, 383.

[19]

F. L. Gewers, G. R. Ferreira, H. F. D. Arruda, F. N. Silva, C. H. Comin, D. R. Amancio, L. D. F. Costa, ACM Comput Surv 2021.

[20]

L.-M. Yang, V. Bačić, I. A. Popov, A. I. Boldyrev, T. Heine, T. Frauenheim, E. Ganz, J. Am. Chem. Soc. 2015, 137, 2757.

[21]

A. A. Kistanov, V. R. Nikitenko, O. V. Prezhdo, J. Phys. Chem. Lett. 2021, 12, 620.

[22]

T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, G. Yang, J. Am. Chem. Soc. 2018, 140, 5962.

[23]

N. Zhang, Y. Hong, S. Yazdanparast, M. Asle Zaeem, 2D Mater 2018, 5, 045004.

[24]

L. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, J. Am. Chem. Soc. 2016, 138, 2649.

[25]

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S. I. Lee, Nat. Mach. Intell. 2020, 2, 56.

[26]

R. Jozefowicz, W. Zaremba, I. Sutskever, Proceedings of the 32nd International Conference on International Conference on Machine Learning 2015, pp. 2342.

[27]

M. Guo, M. Ji, W. Cui, Appl. Surf. Sci. 2022, 592, 153237.

[28]

L. Nummenmaa, E. Glerean, M. Viinikainen, I. P. Jääskeläinen, R. Hari, M. Sams, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9599.

[29]

Y. I. Moon, B. Rajagopalan, U. Lall, Phys. Rev. E 1995, 52, 2318.

[30]

P. Schober, C. Boer, L. A. Schwarte, Anesth. Analg. 2018, 126, 1763.

[31]

R. Kronberg, H. Lappalainen, K. Laasonen, J. Phys. Chem. C 2021, 125, 15918.

[32]

G. Zhou, Inorganic Structural Chemistry. 1982.

[33]

G. Li, B. Wang, D. E. Resasco, J. Catal. 2020, 391, 163.

[34]

Y. Jiao, Y. Zheng, K. Davey, S. Qiao, Nat. Energy 2016, 1, 16130.

[35]

H. Tao, L. Fang, J. Chen, H. Yang, J. Gao, J. Miao, S. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 9978.

[36]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[37]

P. E. Blochl, Phys. Rev. B Condens. Matter. Mater. Phys. 1994, 50, 17953.

[38]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[39]

A. A. Peterson, F. Abild Pedersen, F. Studt, J. R. Osmiumsl, J. K. Norskov, Energ. Environ. Sci. 2010, 3, 1311.

[40]

V. Wang, N. Xu, J. Liu, G. Tang, Commun. Comput. Phys. 2019, 267, 108033.

[41]

S. Nosé, J. Chem. Phys. 1984, 81, 511.

[42]

Y. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. Chen, D. Sun, X. Chen, H. Cheng, W. Ren, Phys. Rev. Mater. 2014, 89, 867.

[43]

K. P. Balanda, H. L. Macgillivray, Am. Stat. 1988, 42, 111.

[44]

S. An, W. Liu, S. Venkatesh, Pattern Recogn. 2007, 40, 2154.

[45]

L. Breiman, Machine Learn. 2001, 45, 5.

[46]

R. Tibshirani, J. R. Stat. Soc. B 2011, 73, 267.

[47]

Q. Yang, Y. Li, J. Yang, Y. Liu, L. Zhang, S. Luo, J. Cheng, Angew. Chem. Int. Ed. 2020, 59, 19282.

[48]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825.

[49]

Y. Liao, V. R. Vemuri, Comput. Secur. 2002, 21, 439.

[50]

J. A. Hanley, B. J. McNeil, Radiology 1982, 143, 29.

[51]

S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Energy Environ. Mater. 2023, 6, e12259.

[52]

T. Xie, J. C. Grossman, Phys. Rev. Lett. 2018, 120, 145301.

[53]

M. Kim, B. C. Yeo, Y. Park, H. M. Lee, S. S. Han, D. Kim, Chem. Mater. 2020, 32, 709.

[54]

L. Hübschle-Schneider, P. Sanders, ACM Trans. Math. Softw. 2022.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/