Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes

Cansu Kök , Lei Wang , Jean Gustavo A. Ruthes , Antje Quade , Matthew E. Suss , Volker Presser

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12742

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12742 DOI: 10.1002/eem2.12742
RESEARCH ARTICLE

Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes

Author information +
History +
PDF

Abstract

The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world. Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods. Herein, we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode. The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li+/Na+ while producing electricity. Our data show that the fuel cell with a titania-coated electrode achieves 95% lithium-ion purity while generating 10.23 Wh of energy per gram of lithium. Our investigation revealed that using atomic layer deposition improved the electrode’s uniformity, stability, and electrocatalytic activity. After 2000 cycles determined by cyclic voltammetry, the electrode preserved its stability.

Keywords

atomic layer deposition / cation selectivity / electrochemical lithium-ion extraction / fuel cell

Cite this article

Download citation ▾
Cansu Kök, Lei Wang, Jean Gustavo A. Ruthes, Antje Quade, Matthew E. Suss, Volker Presser. Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes. Energy & Environmental Materials, 2024, 7(6): e12742 DOI:10.1002/eem2.12742

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. L. Vera, W. R. Torres, C. I. Galli, A. Chagnes, V. Flexer, Nat. Rev. Earth Environ. 2023, 4, 149.

[2]

Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, J. Energy Chem. 2021, 59, 83.

[3]

A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J. Magnan, R. Kostecki, Nature 2023, 616, 245.

[4]

Energy Technology Policy (ETP), International Energy Agency (Ed: T. Gül) 2023.

[5]

A. Yaksic, J. E. Tilton, Resour. Policy 2009, 34, 185.

[6]

B. Tadesse, F. Makuei, B. Albijanic, L. Dyer, Miner. Eng. 2019, 131, 170.

[7]

Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, W. He, Waste Manag. 2016, 51, 227.

[8]

A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Nat. Commun. 2019, 10, 5793.

[9]

X. He, S. Kaur, R. Kostecki, Joule 2020, 4, 1357.

[10]

M. Pasta, A. Battistel, F. La Mantia, Energ. Environ. Sci. 2012, 5, 9487.

[11]

Y. Zhang, W. Sun, R. Xu, L. Wang, H. Tang, J. Clean. Prod. 2021, 285, 124905.

[12]

T. Hoshino, Desalination 2015, 359, 59.

[13]

Z. Li, C. Li, X. Liu, L. Cao, P. Li, R. Wei, X. Li, D. Guo, K.-W. Huang, Z. Lai, Energ. Environ. Sci. 2021, 14, 3152.

[14]

K. Shen, Q. He, Q. Ru, D. Tang, T. Z. Oo, M. Zaw, N. W. Lwin, S. H. Aung, S. C. Tan, F. Chen, J. Membr. Sci. 2023, 671, 121358.

[15]

L. Wang, S. Arnold, P. Ren, Q. Wang, J. Jin, Z. Wen, V. Presser, ACS Energy Lett. 2022, 7, 3539.

[16]

T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, A. G. Olabi, Int. J. Hydrogen Energy 2016, 41, 16509.

[17]

L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem 2000, 1, 162.

[18]

S. Abu Khalla, M. E. Suss, Desalination 2019, 467, 257.

[19]

Y. Zhang, L. Wang, V. Presser, Cell Rep. Phys. Sci. 2021, 2, 100416.

[20]

W. W. McNeary, A. E. Linico, C. Ngo, S. van Rooij, S. Haussener, M. E. Maguire, S. Pylypenko, A. W. Weimer, J. Appl. Electrochem. 2018, 48, 973.

[21]

H. A. Firouzjaie, W. E. Mustain, ACS Catal. 2020, 10, 225.

[22]

J. Li, W. Xia, Y. Guo, R. Qi, X. Xu, D. Jiang, T. Wang, Y. Sugahara, J. He, Y. Yamauchi, Chem. Eng. J. 2023, 477, 146841.

[23]

A. Asokan, S. Abu-Khalla, S. Abdalla, M. Suss, ACS Appl. Energy Mater. 2022, 5, 1743.

[24]

S. Park, D. Shorova, H. Kim, J. Power Sources 2022, 538, 231590.

[25]

T. N. Geppert, M. Bosund, M. Putkonen, B. M. Stühmeier, A. T. Pasanen, P. Heikkilä, H. A. Gasteiger, H. A. El-Sayed, J. Electrochem. Soc. 2020, 167, 084517.

[26]

S. Bagheri, N. Muhd Julkapli, S. Bee Abd Hamid, Sci. World J. 2014, 2014, 727496.

[27]

B. J. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 5, 1804.

[28]

J. A. Kaduk, S. J. L. Billinge, R. E. Dinnebier, N. Henderson, I. Madsen, R. Černý, M. Leoni, L. Lutterotti, S. Thakral, D. Chateigner, Nat. Rev. Methods Primers 2021, 1, 77.

[29]

G. A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, O. Paris, Carbon 2006, 44, 3239.

[30]

T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 1978, 7, 321.

[31]

J. Han, Y. Kim, H. W. Kim, D. H. K. Jackson, D. Lee, H. Chang, H.-J. Chae, K.-Y. Lee, H. J. Kim, Electrochem. Commun. 2017, 83, 46.

[32]

C. E. Finke, S. T. Omelchenko, J. T. Jasper, M. F. Lichterman, C. G. Read, N. S. Lewis, M. R. Hoffmann, Energ. Environ. Sci. 2019, 12, 358.

[33]

B. Bernard, S. Huaneng, P. Sivakumar, L. Vladimir, in Electrolysis (Eds: L. Vladimir, K. Janis), IntechOpen, Rijeka 2012.

[34]

W. Xia, J. Tang, J. Li, S. Zhang, K. C. W. Wu, J. He, Y. Yamauchi, Angew. Chem. Int. Ed. 2019, 58, 13354.

[35]

J. Li, W. Xia, J. Tang, Y. Gao, C. Jiang, Y. Jia, T. Chen, Z. Hou, R. Qi, D. Jiang, T. Asahi, X. Xu, T. Wang, J. He, Y. Yamauchi, J. Am. Chem. Soc. 2022, 144, 9280.

[36]

A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[37]

D. Aaron, Z. Tang, A. B. Papandrew, T. A. Zawodzinski, J. Appl. Electrochem. 2011, 41, 1175.

[38]

Y. Shimonishi, T. Zhang, N. Imanishi, D. Im, D. J. Lee, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, J. Power Sources 2011, 196, 5128.

[39]

V. Klimkevicius, R. Makuska, T. Graule, Appl. Rheol. 2016, 26, 16.

[40]

X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 2019, 591, 117317.

[41]

F. S. Butt, A. Lewis, T. Chen, N. A. Mazlan, X. Wei, J. Hayer, S. Chen, J. Han, Y. Yang, S. Yang, Y. Huang, Membranes 2022, 12, 373.

[42]

X. Zhao, H. Yang, Y. Wang, Z. Sha, J. Electroanal. Chem. 2019, 850, 113389.

[43]

S. Fleischmann, A. Tolosa, M. Zeiger, B. Krüner, N. J. Peter, I. Grobelsek, A. Quade, A. Kruth, V. Presser, J. Mater. Chem. A 2017, 5, 2792.

[44]

S. S. Kocha, K. Shinozaki, J. W. Zack, D. J. Myers, N. N. Kariuki, T. Nowicki, V. Stamenkovic, Y. Kang, D. Li, D. Papageorgopoulos, Electrocatalysis 2017, 8, 366.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/