Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries

Zahra Ahaliabadeh , Ville Miikkulainen , Miia Mäntymäki , Mattia Colalongo , Seyedabolfazl Mousavihashemi , Lide Yao , Hua Jiang , Jouko Lahtinen , Timo Kankaanpää , Tanja Kallio

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12741

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12741 DOI: 10.1002/eem2.12741
RESEARCH ARTICLE

Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Next-generation Li-ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni-rich high-capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC-based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing TiO2-titanium terephthalate thin films on a LiNi0.8Mn0.1Co0.1O2 electrode via ALD-MLD. The electrochemical evaluation demonstrates favorable lithium-ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD-MLD exhibit promising features as flexible and protective coatings for high-energy lithium-ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.

Keywords

degradation mechanisms / electrolyte decomposition / hybrid coatings / lithium-ion battery / lithium-ion kinetics / molecular layer deposition / NMC811

Cite this article

Download citation ▾
Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Mattia Colalongo, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Jouko Lahtinen, Timo Kankaanpää, Tanja Kallio. Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(6): e12741 DOI:10.1002/eem2.12741

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T.-P. Gao, K. W. Wong, K. Y. Fung, W. Zhang, K. M. Ng, Electrochim. Acta 2018, 288, 153.

[2]

W.-W. Li, X.-J. Zhang, J.-J. Si, J. Yang, X.-Y. Sun, Rare Metals 2020.

[3]

J. Ahn, E. K. Jang, S. Yoon, S.-J. Lee, S.-J. Sung, D.-H. Kim, K. Y. Cho, Appl. Surf. Sci. 2019, 484, 701.

[4]

H. Wu, X. Zhou, C. Yang, D. Xu, Y.-H. Zhu, T. Zhou, S. Xin, Y. You, ACS Appl. Mater. Interfaces 2023, 15, 18828.

[5]

W. Zhu, X. Huang, T. Liu, Z. Xie, Y. Wang, K. Tian, L. Bu, H. Wang, L. Gao, J. Zhao, Coatings 2019, 9, 92.

[6]

O. Tiurin, Y. Ein-Eli, Adv. Mater. Interfaces 2019, 6, 1901455.

[7]

M. J. Herzog, D. Esken, J. Janek, Batter. Supercaps 2021, 4, 1003.

[8]

M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, J. Janek, ACS Appl. Energy Mater. 2021, 4, 8832.

[9]

T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock, Electrochem. Energy Rev. 2020, 3, 43.

[10]

M. Wang, Y. Gong, Y. Gu, Y. Chen, L. Chen, H. Shi, Ceram. Int. 2019, 45, 3177.

[11]

J. Hu, L. Li, E. Hu, S. Chae, H. Jia, T. Liu, B. Wu, Y. Bi, K. Amine, C. Wang, J. Zhang, J. Tao, J. Xiao, Nano Energy 2021, 79, 105420.

[12]

T. Wang, Y. Hua, Z. Xu, J. S. Yu, Small 2022, 18, 2102250.

[13]

M. H. Aboonasr Shiraz, E. Rehl, H. Kazemian, J. Liu, Nano 2021, 11, 1976.

[14]

L. Momtazi, H. H. Sønsteby, D. Dartt, J. R. Eidet, O. Nilsen, RSC Adv. 2017, 7, 20900.

[15]

A. Philip, J.-P. Niemela, G. C. Tewari, B. Putz, T. E. J. Edwards, M. Itoh, I. Utke, M. Karppinen, ACS Appl. Mater. Interfaces 2020, 12, 21912.

[16]

Y. Chen, W. Zhao, Q. Zhang, G. Yang, J. Zheng, W. Tang, Q. Xu, C. Lai, J. Yang, C. Peng, Adv. Funct. Mater. 2020, 30, 2000396.

[17]

D. M. Piper, Y. Lee, S.-B. Son, T. Evans, F. Lin, D. Nordlund, X. Xiao, S. M. George, S.-H. Lee, C. Ban, Nano Energy 2016, 22, 202.

[18]

S. S. Vandenbroucke, L. Henderick, L. L. De Taeye, J. Li, K. Jans, P. M. Vereecken, J. Dendooven, C. Detavernier, ACS Appl. Mater. Interfaces 2022, 14, 24903.

[19]

K. Beltrop, S. Klein, R. Nölle, A. Wilken, J. J. Lee, T. K. J. Köster, J. Reiter, L. Tao, C. Liang, M. Winter, X. Qi, T. Placke, Chem. Mater. 2018, 30, 2726.

[20]

V. Vijayakumar, M. Ghosh, K. Asokan, S. B. Sukumaran, S. Kurungot, J. Mindemark, D. Brandell, M. Winter, J. R. Nair, Adv. Energy Mater. 2023, 13, 2203326.

[21]

G. Park, H. Park, W. Seol, S. Suh, J. Kim, J. Y. Jo, H.-J. Kim, Electrochim. Acta 2022, 409, 139984.

[22]

Z. Ahaliabadeh, V. Miikkulainen, M. Mantymaki, S. Mousavihashemi, J. Lahtinen, Y. Lide, H. Jiang, K. Mizohata, T. Kankaanpaa, T. Kallio, ACS Appl. Mater. Interfaces 2021, 13, 42773.

[23]

P. Teichert, H. Jahnke, E. Figgemeier, J. Electrochem. Soc. 2021, 168, 90532.

[24]

J. Liang, S. Hwang, S. Li, J. Luo, Y. Sun, Y. Zhao, Q. Sun, W. Li, M. Li, M. N. Banis, X. Li, R. Li, L. Zhang, S. Zhao, S. Lu, H. Huang, D. Su, X. Sun, Nano Energy 2020, 78, 105107.

[25]

K. Marker, P. J. Reeves, C. Xu, K. J. Griffith, C. P. Grey, Chem. Mater. 2019, 31, 2545.

[26]

R. Ghiyasi, G. C. Tewari, M. Karppinen, J. Phys. Chem. C 2020, 124, 13765.

[27]

J. Heiska, M. Nisula, E.-L. Rautama, A. J. Karttunen, M. Karppinen, Dalton Trans. 2020, 49, 1591.

[28]

L. Seidl, R. Grissa, L. Zhang, S. Trabesinger, C. Battaglia, Adv. Mater. Interfaces 2022, 9, 2100704.

[29]

M. M. Sanad, N. K. Meselhy, H. A. El-Boraey, A. Toghan, J. Mater. Res. Technol. 2023, 23, 1528.

[30]

X. Qu, H. Huang, T. Wan, L. Hu, Z. Yu, Y. Liu, A. Dou, Y. Zhou, M. Su, X. Peng, H. H. Wu, T. Wu, D. Chu, Nano Energy 2022, 91, 106665.

[31]

X. Xiao, X. Deng, Y. Tian, S. Tao, Z. Song, W. Deng, H. Hou, G. Zou, X. Ji, Nano Energy 2022, 103, 107797.

[32]

W. Li, X. Liu, Q. Xie, Y. You, M. Chi, A. Manthiram, Chem. Mater. 2020, 32, 7796.

[33]

C. Ye, W. Tu, L. Yin, Q. Zheng, C. Wang, Y. Zhong, Y. Zhang, Q. Huang, K. Xu, W. Li, J. Mater. Chem. A 2018, 6, 17642.

[34]

Y. Zhang, T. Kang, X. Han, W. Yang, W. Gong, K. Li, Y. Guo, Nano Energy 2023, 111, 108433.

[35]

Z. Zhang, C. Yan, C. Liu, X. Ye, X. Yuan, H. Li, Nanotechnology 2022, 33, 485705.

[36]

Y. Xia, J. Zheng, C. Wang, M. Gu, Nano Energy 2018, 49, 434.

[37]

N. Phattharasupakun, P. Bunyanidhi, P. Chiochan, N. Chanlek, M. Sawangphruk, Electrochem. Commun. 2022, 139, 107309.

[38]

B. P. Thapaliya, S. Misra, S.-Z. Yang, C. J. Jafta, H. M. Meyer III, P. Bagri, R. R. Unocic, C. A. Bridges, S. Dai, Adv. Mater. Interfaces 2022, 9, 2200035.

[39]

T. Kim, Mater. Today Sustain. 2023, 21, 100326.

[40]

Y. Gao, J. Park, X. Liang, ACS Appl. Energy Mater. 2020, 3, 8978.

[41]

S. H. Akella, S. Taragin, Y. Wang, H. Aviv, A. C. Kozen, M. Zysler, L. Wang, D. Sharon, S. B. Lee, M. Noked, ACS Appl. Mater. Interfaces 2021, 13, 61733.

[42]

Y. Zhai, W. Yang, D. Ning, J. Yang, L. Sun, G. Schuck, G. Schumacher, X. Liu, J. Mater. Chem. A 2020, 8, 5234.

[43]

Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 2022, 540, 231633.

[44]

B. Nan, L. Chen, N. D. Rodrigo, O. Borodin, N. Piao, J. Xia, T. Pollard, S. Hou, J. Zhang, X. Ji, J. Xu, X. Zhang, L. Ma, X. He, S. Liu, H. Wan, E. Hu, W. Zhang, K. Xu, X. Q. Yang, B. Lucht, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202205967.

[45]

U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 2021, 38, 309.

[46]

A. K. Haridas, Q. A. Nguyen, T. Terlier, R. Blaser, S. L. Biswal, ACS Appl. Mater. Interfaces 2021, 13, 2662.

[47]

N. D. Phillip, A. S. Westover, C. Daniel, G. M. Veith, ACS Appl. Energy Mater. 2020, 3, 1768.

[48]

H. Gao, J. Cai, G.-L. Xu, L. Li, Y. Ren, X. Meng, K. Amine, Z. Chen, Chem. Mater. 2019, 31, 2723.

[49]

X. Liu, T. Liu, R. Wang, Z. Cai, W. Wang, Y. Yuan, R. Shahbazian-Yassar, X. Li, S. Wang, E. Hu, X.-Q. Yang, Y. Xiao, K. Amine, J. Lu, Y. Sun, ACS Energy Lett. 2020, 6, 320.

[50]

D. Aurbach, E. Markevich, G. Salitra, J. Am. Chem. Soc. 2021, 143, 21161.

[51]

J. Guo, Y. Li, J. Meng, K. Pedersen, L. Gurevich, D.-I. Stroe, J. Energy Chem. 2022, 74, 34.

[52]

H. Yu, Y. Gao, X. Liang, J. Electrochem. Soc. 2019, 166, A2021.

[53]

Z. Ahaliabadeh, M. Colalongo, V. Miikkulainen, Understanding the Stabilizing Effects of Nanoscale Coatings on Lithium-Ion Battery Positive Electrode Materials (NMC811), European Synchrotron Radiation Facility. 2023.

[54]

H. Fathiannasab, A. G. Kashkooli, T. Li, L. Zhu, Z. Chen, J. Electrochem. Soc. 2020, 167, 100558.

[55]

F. Xin, A. Goel, X. Chen, H. Zhou, J. Bai, S. Liu, F. Wang, G. Zhou, M. S. Whittingham, Chem. Mater. 2022, 34, 7858.

[56]

T.-T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot, B. Delobel, C. Delacourt, A. Demorti’ere, Adv. Energy Mater. 2021, 11, 2003529.

[57]

H. Zhang, X. He, Z. Chen, Y. Yang, H. Xu, L. Wang, X. He, Adv. Energy Mater. 2022, 12, 2202022.

[58]

S. Sharifi-Asl, V. Yurkiv, A. Gutierrez, M. Cheng, M. Balasubramanian, F. Mashayek, J. Croy, R. Shahbazian-Yassar, Nano Lett. 2019, 20, 1208.

[59]

T. M. Heenan, A. Wade, C. Tan, J. E. Parker, D. Matras, A. S. Leach, J. B. Robinson, A. Llewellyn, A. Dimitrijevic, R. Jervis, P. D. Quinn, D. J. L. Brett, P. R. Shearing, Adv. Energy Mater. 2020, 10, 2002655.

[60]

F. B. Spingler, S. Kücher, R. Phillips, E. Moyassari, A. Jossen, J. Electrochem. Soc. 2021, 168, 40515.

[61]

S. Mousavihashemi, K. Lahtinen, T. Kallio, Electrochim. Acta 2022, 412, 140093.

[62]

Y. Li, X. Liu, D. Ren, H. Hsu, G.-L. Xu, J. Hou, L. Wang, X. Feng, L. Lu, W. Xu, Y. Ren, R. Li, X. He, K. Amine, M. Ouyang, Nano Energy 2020, 71, 104643.

[63]

Z. Ruff, C. S. Coates, K. Märker, A. Mahadevegowda, C. Xu, M. E. Penrod, C. Ducati, C. P. Grey, Chem. Mater. 2023, 35, 4987.

[64]

W. Hua, B. Schwarz, R. Azmi, M. Müller, M. S. D. Darma, M. Knapp, A. Senyshyn, M. Heere, A. Missyul, L. Simonelli, J. R. Binder, S. Indris, H. Ehrenberg, Nano Energy 2020, 78, 105231.

[65]

P. Bunyanidhi, N. Phattharasupakun, C. Tomon, S. Duangdangchote, P. Kidkhunthod, M. Sawangphruk, J. Power Sources 2022, 549, 232043.

[66]

H. Liu, Z. Xie, W. Qu, E. Dy, S. Niketic, S. Brueckner, K. Tsay, E. Fuller, C. Bock, N. Zaker, G. A. Botton, Small 2022, 18, 2200627.

[67]

B. Jiang, H. Xu, X. Cheng, J. Li, H. Wang, Y. Liu, ChemElectroChem 2022, 9, e202101251.

[68]

K. Jalkanen, J. Karppinen, L. Skogström, T. Laurila, M. Nisula, K. Vuorilehto, Appl. Energy 2015, 154, 160.

[69]

Z. Ruff, C. Xu, C. P. Grey, J. Electrochem. Soc. 2021, 168, 60518.

[70]

Z. Yang, H. Charalambous, S. E. Trask, A. Montoya, A. Jansen, K. M. Wiaderek, I. Bloom, J. Power Sources 2022, 549, 232119.

[71]

P. J. West, C. D. Quilty, Z. Wang, S. N. Ehrlich, L. Ma, C. Jaye, D. A. Fischer, X. Tong, A. M. Kiss, E. S. Takeuchi, A. C. Marschilok, K. J. Takeuchi, D. C. Bock, J. Phys. Chem. C 2023, 127, 7054.

[72]

A. L. Lipson, B. J. Ross, J. L. Durham, D. Liu, M. LeResche, T. T. Fister, L. Liu, K. Kim, ACS Appl. Energy Mater. 2021, 4, 1972.

[73]

S. L. Burg, A. L. Washington, J. Villanova, A. J. Dennison, D. McLoughlin, O. O. Mykhaylyk, P. Vukusic, W. Furnass, R. A. Jones, A. J. Parnell, J. P. A. Fairclough, Sci. Data 2020, 7, 163.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/