Exceptional Performance of 3D Additive Manufactured NiFe Phosphite Oxyhydroxide Hollow Tubular Lattice Plastic Electrode for Large-Current-Density Water Oxidization

Liping Ding , Lin Zhang , Gaoyuan Li , Shuyan Chen , Han Yan , Haibiao Tu , Jianmin Su , Qi Li , Yanfeng Tang , Yanqing Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12740

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12740 DOI: 10.1002/eem2.12740
RESEARCH ARTICLE

Exceptional Performance of 3D Additive Manufactured NiFe Phosphite Oxyhydroxide Hollow Tubular Lattice Plastic Electrode for Large-Current-Density Water Oxidization

Author information +
History +
PDF

Abstract

In this article, we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing (DLP) 3D-printing technology via induced chemical deposition method. The as-prepared 3D plastic electrode exhibits no template requirement, freedom design, low-cost, robust, anticorrosion, lightweight, and micro-nano porous characteristics. It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area, wetting performance, and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction (OER) catalysis process. Density functional theory (DFT) calculation interprets the origin of high activity of NiFe(PO3)O(OH) and demonstrates that the implantation of the –PO3 can effectively bind the 3d orbital of Ni in NiFe(PO3)O(OH), lead to the weak adsorption of intermediate, make electron more active to improve the conductivity, thereby lowing the transform free energy of *O to *OOH. The water oxidization performance of as-prepared 3D NiFe(PO3)O(OH) hollow tubular (HT) lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes, especially for high current OER electrodes. This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.

Keywords

3D plastic electrode / 3D printing / induced chemical deposition / largecurrent-density water oxidization / NiFe phosphite oxyhydroxide

Cite this article

Download citation ▾
Liping Ding, Lin Zhang, Gaoyuan Li, Shuyan Chen, Han Yan, Haibiao Tu, Jianmin Su, Qi Li, Yanfeng Tang, Yanqing Wang. Exceptional Performance of 3D Additive Manufactured NiFe Phosphite Oxyhydroxide Hollow Tubular Lattice Plastic Electrode for Large-Current-Density Water Oxidization. Energy & Environmental Materials, 2024, 7(6): e12740 DOI:10.1002/eem2.12740

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Adv. Mater. 2021, 33, 2006042.

[2]

X. Li, J. Zhou, C. Liu, L. Xu, C. Lu, J. Yang, H. Pang, W. Hou, Appl. Catal. B-Environ. 2021, 298, 120578.

[3]

X. Li, C. Liu, Z. Fang, L. Xu, C. Lu, W. Hou, Small 2022, 18, 2104354.

[4]

X. Li, C. Liu, Z. Fang, L. Xu, C. Lu, W. Hou, J. Mater. Chem. A 2022, 10, 20626.

[5]

F. Wang, L. Xu, P. Wang, Y. Zhang, Electrochim. Acta 2019, 306, 437.

[6]

C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, C. Yang, Energ. Environ. Sci. 2020, 13, 86.

[7]

Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Adv. Mater. 2022, 34, 2108133.

[8]

V. R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Y. Jung, S. C. Yi, Adv. Energy Mater. 2020, 10, 1904020.

[9]

L. Yang, L. Huang, Y. Yao, L. Jiao, Appl. Catal. B-Environ. 2021, 282, 119584.

[10]

W. Cheng, S. Xi, Z. P. Wu, D. Luan, X. W. (David)Lou, Sci. Adv. 2021, 7, eabk0919.

[11]

C. Liu, J. Qian, Y. Ye, H. Zhou, C. J. Sun, C. Sheehan, Z. Zhang, G. Wan, Y. S. Liu, J. Guo, S. Li, H. Shin, S. Hwang, T. B. Gunnoe, W. A. Goddard III, S. Zhang, Nat. Catal. 2021, 4, 36.

[12]

W. Li, J. Liu, P. Guo, H. Li, B. Fei, Y. Guo, H. Pan, D. Sun, F. Fang, R. Wu, Adv. Energy Mater. 2021, 11, 2102134.

[13]

F. Fan, Q. Huang, K. K. Rani, X. Peng, X. Liu, L. Wang, Z. Yang, D. Huang, R. Devasenathipathy, D. H. Chen, Y. Fan, W. Chen, Chem. Eng. J. 2023, 470, 144380.

[14]

C. Feng, M. B. Faheem, J. Fu, Y. Xiao, C. Li, Y. Li, ACS Catal. 2020, 10, 4019.

[15]

Y. Zuo, Y. Liu, J. Li, R. Du, X. Han, T. Zhang, J. Arbiol, N. J. Divins, J. Llorca, N. Guijarro, K. Sivula, A. Cabot, Chem. Mater. 2019, 31, 7732.

[16]

K. Ham, J. Lee, K. Lee, J. Lee, J. Energy Chem. 2022, 71, 580.

[17]

Z. Jin, A. J. Bard, Angew. Chem. Int. Ed. 2021, 60, 794.

[18]

C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu, P. K. Chu, Appl. Catal. B-Environ. 2021, 297, 120461.

[19]

C. F. Li, J. W. Zhao, L. J. Xie, J. Q. Wu, G. R. Li, Appl. Catal. B-Environ. 2021, 291, 119987.

[20]

W. Cheng, Z. P. Wu, D. Luan, S. Q. Zang, X. W. (David) Lou, Angew. Chem. Int. Ed. 2021, 60, 26397.

[21]

L. Xia, L. Bo, W. Shi, Y. Zhang, Y. Shen, X. Ji, X. Guan, Y. Wang, J. Tong, Chem. Eng. J. 2023, 452, 139250.

[22]

F. Zheng, W. Zhang, X. Zhang, Y. Zhang, W. Chen, Adv. Funct. Mater. 2021, 31, 2103318.

[23]

W. Xu, K. Wu, Y. Wu, Q. Guo, F. Fan, A. Li, L. Yang, F. Zheng, Y. Fan, W. Chen, Electrochim. Acta 2023, 439, 141712.

[24]

F. Fan, Y. Hui, R. Devasenathipathy, X. Peng, Q. Huang, W. Xu, F. Yang, X. Liu, L. Wang, D. H. Chen, Y. Fan, W. Chen, J. Colloid Interface Sci. 2023, 636, 450.

[25]

Z. Su, Q. Huang, Q. Guo, S. J. Hoseini, F. Zheng, W. Chen, Nano Res. Energy 2023, 2, e9120078.

[26]

R. Wei, K. Zhang, P. Zhao, Y. An, C. Tang, C. Chen, X. Li, X. Ma, Y. Ma, X. Hao, Appl. Surf. Sci. 2021, 549, 149327.

[27]

S. Q. Liu, M. R. Gao, S. Liu, J. L. Luo, Appl. Catal. B-Environ. 2021, 292, 120148.

[28]

H. Li, C. Zhang, W. Xiang, M. A. Amin, J. Na, S. Wang, J. Yu, Y. Yamauchi, Chem. Eng. J. 2023, 452, 139104.

[29]

Y. Wang, Y. Wang, H. Gao, Z. Huang, Q. Hao, B. Liu, Chem. Eng. J. 2023, 451, 138515.

[30]

Z. Zeng, S. Kuang, Z. F. Huang, X. Chen, Y. Su, Y. Wang, S. Zhang, X. Ma, Chem. Eng. J. 2022, 433, 134446.

[31]

A. Ambrosi, M. Pumera, ACS Sustain. Chem. Eng. 2018, 6, 16968.

[32]

X. Huang, S. Chang, W. S. V. Lee, J. Ding, J. M. Xue, J. Mater. Chem. A 2017, 5, 18176.

[33]

A. Ambrosi, M. Pumera, Adv. Funct. Mater. 2018, 28, 1700655.

[34]

Y. Ying, M. P. Browne, M. Pumera, Sustain. Energ. Fuels 2020, 4, 3732.

[35]

S. Chang, X. Huang, C. Y. A. Ong, L. Zhao, L. Li, X. Wang, J. Ding, J. Mater. Chem. A 2019, 7, 18338.

[36]

A. Ambrosi, J. G. S. Moo, M. Pumera, Adv. Funct. Mater. 2016, 26, 698.

[37]

J. P. Hughes, P. L. Santos, M. P. Down, C. W. Foster, J. A. Bonacin, E. M. Keefe, S. J. Rowley-Neale, C. E. Banks, Sustain. Energ. Fuels 2020, 4, 302.

[38]

J. C. Bui, J. T. Davis, D. V. Esposito, Sustain. Energ. Fuels 2020, 4, 213.

[39]

S. Liu, R. Liu, D. Gao, I. Trentin, C. Streb, Chem. Commun. 2020, 56, 8476.

[40]

M. Peng, D. Shi, Y. Sun, J. Cheng, B. Zhao, Y. Xie, J. Zhang, W. Guo, Z. Jia, Z. Liang, L. Jiang, Adv. Mater. 2020, 32, 1908201.

[41]

X. Xu, C. Li, J. G. Lim, Y. Wang, A. Ong, X. Li, E. Peng, J. Ding, ACS Appl. Mater. Interfaces 2018, 10, 30273.

[42]

P. L. Santos, S. J. Rowley-Neale, A. G. M. Ferrari, J. A. Bonacin, C. E. Banks, ChemElectroChem 2019, 6, 5633.

[43]

J. Ahn, Y. S. Park, S. Lee, J. Yang, J. Pyo, J. Lee, G. H. Kim, S. M. Choi, S. K. Seol, Sci. Rep.-UK 2022, 12, 346.

[44]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886.

[45]

C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.

[46]

S. F. Hung, Y. Y. Hsu, C. J. Chang, C. S. Hsu, N. T. Suen, T. S. Chan, H. M. Chen, Adv. Energy Mater. 2018, 8, 1701686.

[47]

F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen, Z. Ren, ACS Catal. 2017, 7, 2052.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/