Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells

Sai Ma , Jiahong Tang , Guizhou Yuan , Ying Zhang , Yan Wang , Yuetong Wu , Cheng Zhu , Yimiao Wang , Shengfang Wu , Yue Lu , Shumeng Chi , Tinglu Song , Huanping Zhou , Manling Sui , Yujing Li , Qi Chen

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12739

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12739 DOI: 10.1002/eem2.12739
RESEARCH ARTICLE

Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Enhancing the lifetime of perovskite solar cells (PSCs) is one of the essential challenges for their industrialization. Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions. However, the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging, respectively, resulting in irreversible damage to the morphology, component, and phase of stacked materials. Herein, the viscoelastic polymer polyvinyl butyral (PVB) material is designed onto the surface of perovskite films to form flexible interface encapsulation. After PVB interface encapsulation, the surface modulus of perovskite films decreases by nearly 50%, and the interface stress range under the dynamic temperature field (−40 to 85 °C) drops from −42.5 to 64.8 MPa to −14.8 to 5.0 MPa. Besides, PVB forms chemical interactions with FA+ cations and Pb2+, and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film. As a result, the optimized device’s efficiency increases from 22.21% to 23.11%. Additionally, after 1500 h of thermal treatment (85 °C), 1000 h of damp heat test (85 °C & 85% RH), and 250 cycles of thermal cycling test (−40 to 85 °C), the devices maintain 92.6%, 85.8%, and 96.1% of their initial efficiencies, respectively.

Keywords

device stability / perovskite solar cells / stress field / surface modulus / thermal shock

Cite this article

Download citation ▾
Sai Ma, Jiahong Tang, Guizhou Yuan, Ying Zhang, Yan Wang, Yuetong Wu, Cheng Zhu, Yimiao Wang, Shengfang Wu, Yue Lu, Shumeng Chi, Tinglu Song, Huanping Zhou, Manling Sui, Yujing Li, Qi Chen. Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells. Energy & Environmental Materials, 2024, 7(6): e12739 DOI:10.1002/eem2.12739

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: December 2023).

[2]

Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, Science 2022, 377, 531.

[3]

J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, Nature 2021, 590, 587.

[4]

Y. Liu, S. Akin, A. Hinderhofer, F. T. Eickemeyer, H. Zhu, J. Y. Seo, J. Zhang, F. Schreiber, H. Zhang, S. M. Zakeeruddin, Angew. Chem. Int. Ed. 2020, 59, 15688.

[5]

M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science 2022, 375, 302.

[6]

S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. Musiienko, D. Menzel, F. Lang, S. Keßler, I. Levine, D. Mantione, A. Al-Ashouri, M. S. Härtel, K. Xu, A. Cruz, J. Kurpiers, P. Wagner, H. Köbler, J. Li, A. Magomedov, D. Mecerreyes, E. Unger, A. Abate, M. Stolterfoht, B. Stannowski, R. Schlatmann, L. Korte, S. Albrecht, Science 2023, 381, 63.

[7]

X. Y. Chin, D. Turkay, J. A. Steele, S. Tabean, S. Eswara, M. Mensi, P. Fiala, C. M. Wolff, A. Paracchino, K. Artuk, D. Jacobs, Q. Guesnay, F. Sahli, G. Andreatta, M. Boccard, Q. Jeangros, C. Ballif, Science 2023, 381, 59.

[8]

M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, Joule 2019, 3, 2179.

[9]

Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu, Y. Chen, K. Li, X. Niu, N. Li, G. Liu, Y. Zhang, H. Zai, Q. Chen, T. Lei, L. Wang, H. Zhou, Nature 2023, 623, 531.

[10]

S. W. Lee, S. Bae, D. Kim, H. S. Lee, Adv. Mater. 2020, 32, 2002202.

[11]

N.-G. Park, K. Zhu, Nat. Rev. Mater. 2020, 5, 333.

[12]

S. Pescetelli, A. Agresti, S. Razza, H. Pazniak, L. Najafi, F. Bonaccorso, A. Di Carlo, Nano Energy 2022, 95, 107019.

[13]

Y. Y. Kim, S. M. Bang, J. Im, G. Kim, J. J. Yoo, E. Y. Park, S. Song, N. J. Jeon, J. Seo, Adv. Sci. 2023, 10, 2300728.

[14]

R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.

[15]

P. Cheng, Y. An, A. K.-Y. Jen, D. Lei, Adv. Mater. 2024, 36, 2309459.

[16]

T. Xu, Y. Chen, Q. Chen, Sci. China Phys. Mech. Astron. 2023, 66, 217305.

[17]

M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. D. Carlo, R. Cheacharoen, Y. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. D. Girolamo, M. Grätzel, A. Hagfeldt, E. Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y. Loo, J. M. Luther, C. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N. Park, M. O. Reese, F. D. Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S. M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Nat. Energy 2020, 5, 35.

[18]

Y. Ge, F. Ye, M. Xiao, H. Wang, C. Wang, J. Liang, X. Hu, H. Guan, H. Cui, W. Ke, Adv. Energy Mater. 2022, 12, 2200361.

[19]

S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li, Q. Chen, Energ. Environ. Sci. 2022, 15, 13.

[20]

L. Xiang, F. Gao, Y. Cao, D. Li, Q. Liu, H. Liu, S. Li, Org. Electron. 2022, 106, 106515.

[21]

Y. Zhou, Y. Yin, X. Zuo, L. Wang, T.-D. Li, Y. Xue, A. Subramanian, Y. Fang, Y. Guo, Z. Yang, Chem. Mater. 2021, 33, 6120.

[22]

Y. Cheng, Q.-D. Yang, L. Ding, Sci. Bull. 2021, 66, 100.

[23]

J. Dou, Q. Chen, Energy Mater. Adv. 2022, 2022, 0002.

[24]

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Hoye, C. D. Bailie, T. Leijtens, Nat. Energy 2017, 2, 17009.

[25]

R. Cheacharoen, N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt, M. D. McGehee, Energ. Environ. Sci. 2018, 11, 144.

[26]

R. Cheacharoen, C. C. Boyd, G. F. Burkhard, T. Leijtens, J. A. Raiford, K. A. Bush, S. F. Bent, M. D. McGehee, Sustain. Energy Fuel 2018, 2, 2398.

[27]

L. Shi, M. Zhang, Y. Cho, T. L. Young, D. Wang, H. Yi, J. Kim, S. Huang, A. W. Ho-Baillie, ACS Appl. Mater. Interfaces 2017, 9, 25073.

[28]

R. Cheacharoen, K. A. Bush, N. Rolston, D. Harwood, R. H. Dauskardt, M. D. McGehee, presented at 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 – A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC, Piscataway, NJ, June 2018.

[29]

A. Rizzo, L. Ortolan, S. Murrone, L. Torto, M. Barbato, N. Wrachien, A. Cester, F. Matteocci, A. Di Carlo, presented at 2017 IEEE Int. Rel. Phys. Symp (IRPS), Monterey, CA, April 2017.

[30]

T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi, T. Negami, Adv. Mater. 2019, 31, 1806823.

[31]

J. He, T. Li, X. Liu, H. Su, Z. Ku, J. Zhong, F. Huang, Y. Peng, Y.-B. Cheng, Sol. Energy 2019, 188, 312.

[32]

N. Rolston, B. L. Watson, C. D. Bailie, M. D. McGehee, J. P. Bastos, R. Gehlhaar, J.-E. Kim, D. Vak, A. T. Mallajosyula, G. Gupta, Extreme Mech. Lett. 2016, 9, 353.

[33]

G. Yuan, W. Xie, Q. Song, S. Ma, Y. Ma, C. Shi, M. Xiao, F. Pei, X. Niu, Y. Zhang, J. Dou, C. Zhu, Y. Bai, Y. Wu, H. Wang, Q. Fan, Q. Chen, Adv. Mater. 2023, 35, 2211257.

[34]

D. B. Khadka, Y. Shirai, M. Yanagida, K. Uto, K. Miyano, Sol. Energy Mater. Sol. Cells 2022, 246, 111899.

[35]

L. Shi, M. Zhang, Y. Cho, T. L. Young, D. Wang, H. Yi, J. Kim, S. Huang, A. W. Ho-Baillie, A. C. S. Appl, Energy Mater. 2019, 2, 2358.

[36]

L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, Science 2020, 368, eaba2412.

[37]

C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, J. Dou, T. Song, P. Chen, H. Zhou, Q. Chen, Adv. Funct. Mater. 2022, 32, 2201193.

[38]

J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield, J. Huang, Sci. Adv. 2017, 3, eaao5616.

[39]

E. Aydin, M. De Bastiani, S. De Wolf, Adv. Mater. 2019, 31, 1900428.

[40]

J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Nat. Commun. 2018, 9, 3021.

[41]

F. Li, Z. Shen, Y. Weng, Q. Lou, C. Chen, L. Shen, W. Guo, G. Li, Adv. Funct. Mater. 2020, 30, 2004933.

[42]

H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, Adv. Mater. 2019, 31, 1904408.

[43]

C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Nat. Commun. 2019, 10, 815.

[44]

Q. Tu, D. Kim, M. Shyikh, M. G. Kanatzidis, Matter 2021, 4, 2765.

[45]

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, L. Martinu, J. Vac. Sci. Technol. A 2018, 36, 20801.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/