Mo2B2O2 MBene for Efficient Electrochemical CO Reduction to C2 Chemicals: Computational Exploration

Bikun Zhang , Jianwen Jiang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12738

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (6) : e12738 DOI: 10.1002/eem2.12738
RESEARCH ARTICLE

Mo2B2O2 MBene for Efficient Electrochemical CO Reduction to C2 Chemicals: Computational Exploration

Author information +
History +
PDF

Abstract

Emerging as a new class of two-dimensional materials with atomically thin layers, MBenes have great potential for many important applications such as energy storage and electrocatalysis. Toward mitigating carbon footprint, there has been increasing interest in CO2/CO conversion on MBenes, but mostly focused on C1 products. C2+ chemicals generally possess higher energy densities and wider applications than C1 counterparts. However, C–C coupling is technically challenging because of high energy requirement and currently few catalysts are suited for this process. Here, we explore electrochemical CO reduction reaction to C2 chemicals on Mo2B2O2 MBene via density-functional theory calculations. Remarkably, the most favorable CO–COH coupling is revealed to be a spontaneous and barrierless process, making Mo2B2O2 an efficient catalyst for C–C coupling. Among C1 and C2 chemicals, ethanol is predicted to be the primary product. Furthermore, by charge and bond analysis, it is unraveled that there exist significantly more unbonded electrons in the C atom of intermediate *COH than other C1 intermediates, which is responsible for the facile C–C coupling. From an atomic scale, this work provides microscopic insight into C–C coupling process and suggests Mo2B2O2 a promising catalyst for electrochemical CO reduction to C2 chemicals.

Keywords

C 2 chemicals / C–C coupling / density-functional theory / MBene / Mo 2B 2O 2

Cite this article

Download citation ▾
Bikun Zhang, Jianwen Jiang. Mo2B2O2 MBene for Efficient Electrochemical CO Reduction to C2 Chemicals: Computational Exploration. Energy & Environmental Materials, 2024, 7(6): e12738 DOI:10.1002/eem2.12738

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Shafiee, E. Topal, Energy Policy 2009, 37, 181.

[2]

Q.-J. Wu, J. Liang, Y.-B. Huang, R. Cao, Acc. Chem. Res. 2022, 55, 2978.

[3]

O. Piqué, Q. H. Low, A. D. Handoko, B. S. Yeo, F. Calle-Vallejo, Angew. Chem. Int. Ed. 2021, 60, 10784.

[4]

B. An, Z. Li, Y. Song, J. Zhang, L. Zeng, C. Wang, W. Lin, Nat. Catal. 2019, 2, 709.

[5]

K. Das, R. Das, M. Riyaz, A. Parui, D. Bagchi, A. K. Singh, A. K. Singh, C. P. Vinod, S. C. Peter, Adv. Mater. 2023, 35, 2205994.

[6]

L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Sci. Adv. 2020, 6, eaay3111.

[7]

X. Jiang, X. Nie, X. Guo, C. Song, J. G. Chen, Chem. Rev. 2020, 120, 7984.

[8]

C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.

[9]

R. Kortlever, I. Peters, S. Koper, M. T. M. Koper, ACS Catal. 2015, 5, 3916.

[10]

P. Gao, S. Li, X. Bu, S. Dang, Z. Liu, H. Wang, L. Zhong, M. Qiu, C. Yang, J. Cai, W. Wei, Y. Sun, Nat. Chem. 2017, 9, 1019.

[11]

Y. Xie, P. Ou, X. Wang, Z. Xu, Y. C. Li, Z. Wang, J. E. Huang, J. Wicks, C. McCallum, N. Wang, Y. Wang, T. Chen, B. T. W. Lo, D. Sinton, J. C. Yu, Y. Wang, E. H. Sargent, Nat. Catal. 2022, 5, 564.

[12]

J. Zhang, G. Zeng, S. Zhu, H. Tao, Y. Pan, W. Lai, J. Bao, C. Lian, D. Su, M. Shao, H. Huang, Proc. Natl. Acad. Sci. USA 2023, 120, e2218987120.

[13]

X. Ma, L. Xu, S. Liu, L. Zhang, X. Tan, L. Wu, J. Feng, Z. Liu, X. Sun, B. Han, Chem Catal. 2022, 2, 3207.

[14]

D. Xu, Y. Wang, M. Ding, X. Hong, G. Liu, S. C. E. Tsang, Chem 2021, 7, 849.

[15]

A. H. M. da Silva, G. Karaiskakis, R. E. Vos, M. T. M. Koper, J. Am. Chem. Soc. 2023, 145, 15343.

[16]

K. Qi, Y. Zhang, N. Onofrio, E. Petit, X. Cui, J. Ma, J. Fan, H. Wu, W. Wang, J. Li, J. Liu, Y. Zhang, Y. Wang, G. Jia, J. Wu, L. Lajaunie, C. Salameh, D. Voiry, Nat. Catal. 2023, 6, 319.

[17]

S. S. Ali, S. S. Ali, N. Tabassum, J. Environ. Chem. Eng. 2022, 10, 106962.

[18]

X. Liu, Y. Hou, F. Yang, Y. Liu, H. Yu, X. Han, J. Chen, S. Chen, S. Zhou, S. Deng, J. Wang, Carbon 2023, 201, 460.

[19]

P. Li, J. Bi, J. Liu, Y. Wang, X. Kang, X. Sun, J. Zhang, Z. Liu, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 4675.

[20]

N. Wang, K. Yao, A. Vomiero, Y. Wang, H. Liang, SmartMat 2021, 2, 423.

[21]

Y. Zhu, X. Cui, H. Liu, Z. Guo, Y. Dang, Z. Fan, Z. Zhang, W. Hu, Nano Res. 2021, 14, 4471.

[22]

P. Wei, D. Gao, T. Liu, H. Li, J. Sang, C. Wang, R. Cai, G. Wang, X. Bao, Nat. Nanotechnol. 2023, 18, 299.

[23]

M. Jouny, G. S. Hutchings, F. Jiao, Nat. Catal. 2019, 2, 1062.

[24]

D. Zhang, O. V. Prezhdo, L. Xu, J. Am. Chem. Soc. 2023, 145, 7030.

[25]

C. Xiao, J. Zhang, ACS Nano 2021, 15, 7975.

[26]

K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050.

[27]

J. H. Montoya, A. A. Peterson, J. K. Nørskov, ChemCatChem 2013, 5, 737.

[28]

Y. Hori, in Electrochemical CO2 Reduction on Metal Electrodes (Eds: C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco), Springer New York, New York 2008.

[29]

J. H. Montoya, C. Shi, K. Chan, J. K. Nørskov, J. Phys. Chem. Lett. 2015, 6, 2032.

[30]

L. Fan, Q. Geng, L. Ma, C. Wang, J.-X. Li, W. Zhu, R. Shao, W. Li, X. Feng, Y. Yamauchi, C. Li, L. Jiang, Chem. Sci. 2023, 14, 13851.

[31]

L. Ma, Q. Geng, L. Fan, J.-X. Li, D. Du, J. Bai, C. Li, Nano Res. 2023, 16, 9065.

[32]

Z. Guo, J. Zhou, Z. Sun, J. Mater. Chem. A 2017, 5, 23530.

[33]

T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, J. Mater. Chem. A 2021, 9, 433.

[34]

B. Zhang, J. Zhou, S. R. Elliott, Z. Sun, J. Mater. Chem. A 2020, 8, 23947.

[35]

B. Zhang, J. Zhou, Z. Guo, Q. Peng, Z. Sun, Appl. Surf. Sci. 2020, 500, 144248.

[36]

B. Zhang, J. Zhou, Z. Sun, J. Mater. Chem. A 2022, 10, 15865.

[37]

B. Zhang, J. Zhou, Z. Sun, Nanoscale 2023, 15, 483.

[38]

J. Wang, T.-N. Ye, Y. Gong, J. Wu, N. Miao, T. Tada, H. Hosono, Nat. Commun. 2019, 10, 2284.

[39]

L. T. Alameda, P. Moradifar, Z. P. Metzger, N. Alem, R. E. Schaak, J. Am. Chem. Soc. 2018, 140, 8833.

[40]

W. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li, Z. Huang, S. Ye, Y. Li, X. Ren, X. Wang, X. Ouyang, Q. Zhang, J. Liu, Chem. Eng. J. 2022, 446, 137466.

[41]

X. Liu, Z. Liu, H. Deng, J. Phys. Chem. C 2021, 125, 19183.

[42]

X. Bai, Z. Zhao, G. Lu, J. Phys. Chem. Lett. 2023, 14, 5172.

[43]

Y. Xiao, C. Shen, N. Hadaeghi, J. Phys. Chem. Lett. 2021, 12, 6370.

[44]

R. A. Olsen, G. J. Kroes, E. J. Baerends, J. Chem. Phys. 1999, 111, 11155.

[45]

A. A. Koverga, E. Flórez, C. Jimenez-Orozco, J. A. Rodriguez, Phys. Chem. Chem. Phys. 2021, 23, 20255.

[46]

K. Kato, T. Uda, K. Terakura, Phys. Rev. Lett. 1998, 80, 2000.

[47]

X. Wang, Z. Wang, F. P. García de Arquer, C.-T. Dinh, A. Ozden, Y. C. Li, D.-H. Nam, J. Li, Y.-S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T.-T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S.-F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Energy 2020, 5, 478.

[48]

L. R. L. Ting, O. Piqué, S. Y. Lim, M. Tanhaei, F. Calle-Vallejo, B. S. Yeo, ACS Catal. 2020, 10, 4059.

[49]

J.-S. Wang, G.-C. Zhao, Y.-Q. Qiu, C.-G. Liu, J. Phys. Chem. C 2021, 125, 572.

[50]

P. Mano, S. Namuangruk, K. Takahashi, J. Phys. Chem. C 2023, 127, 7683.

[51]

Y. Xiang, Y. Sun, Y. Liu, Y. Liu, J. Zhao, ACS Appl. Mater. Interfaces 2023, 15, 13033.

[52]

W. Luo, X. Nie, M. J. Janik, A. Asthagiri, ACS Catal. 2016, 6, 219.

[53]

A. J. Garza, A. T. Bell, M. Head-Gordon, ACS Catal. 2018, 8, 1490.

[54]

R. Sundararaman, W. A. Goddard III, T. A. Arias, J. Chem. Phys. 2017, 146, 114104.

[55]

M. M. Melander, T. Wu, T. Weckman, K. Honkala, npj Comput. Mater. 2024, 10, 5.

[56]

F. Domínguez-Flores, M. M. Melander, J. Chem. Phys. 2023, 158, 144701.

[57]

J. Li, Y. Sun, Z. Zhang, SmartMat 2023, 4, e1171.

[58]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[59]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[60]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.

[61]

A. D. Becke, Phys. Rev. A 1988, 38, 3098.

[62]

D. C. Langreth, M. J. Mehl, Phys. Rev. B 1983, 28, 1809.

[63]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[64]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[65]

K. Mathew, V. S. C. Kolluru, S. Mula, S. N. Steinmann, R. G. Hennig, J. Chem. Phys. 2019, 151, 234101.

[66]

K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 084106.

[67]

W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 2009, 21, 084204.

[68]

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

[69]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/