Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction

Casey E. Beall , Emiliana Fabbri , Adam H. Clark , Vivian Meier , Nur Sena Yüzbasi , Benjamin H. Sjølin , Ivano E. Castelli , Dino Aegerter , Thomas Graule , Thomas J. Schmidt

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12737

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12737 DOI: 10.1002/eem2.12737
RESEARCH ARTICLE

Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction

Author information +
History +
PDF

Abstract

In a unified regenerative fuel cell (URFC) or reversible fuel cell, the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction (ORR), fuel cell mode, and the oxygen evolution reaction (OER), electrolyzer mode. However, it is often unclear what effect alternating between ORR and OER has on the electrochemical behavior and physiochemical properties of the catalyst. Herein, operando X-ray absorption spectroscopy (XAS) is utilized to monitor the continuous and dynamic evolution of the Co, Mn, and Fe oxidation states of perovskite catalysts Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.4Sr0.6MnO3-δ (LSM), while the potential is oscillated between reducing and oxidizing potentials with cyclic voltammetry. The results reveal the importance of investigating bifunctional catalysts by alternating between fuel cell and electrolyzer operation and highlight the limitations and challenges of bifunctional catalysts. It is shown that the requirements for ORR and OER performance are divergent and that the oxidative potentials of OER are detrimental to ORR activity. These findings are used to give guidelines for future bifunctional catalyst design. Additionally, it is demonstrated how sunlight can be used to reactivate the ORR activity of LSM after rigorous cycling.

Keywords

BSCF / LSM / OER / ORR / XAS

Cite this article

Download citation ▾
Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Benjamin H. Sjølin, Ivano E. Castelli, Dino Aegerter, Thomas Graule, Thomas J. Schmidt. Time-Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction. Energy & Environmental Materials, 2024, 7(5): e12737 DOI:10.1002/eem2.12737

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. M. Vindel, J. Polo, Atmos. Res. 2014, 143, 313.

[2]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[3]

D. Abbott, Proc. IEEE 2010, 98, 42.

[4]

W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404.

[5]

K. Zeng, X. Zheng, C. Li, J. Yan, J. Tian, C. Jin, P. Strasser, R. Yang, Adv. Funct. Mater. 2020, 30, 2000503.

[6]

P. Gayen, S. Saha, X. Liu, K. Sharma, V. K. Ramani, Proc. Natl. Acad. Sci. USA 2021, 118, e2107205118.

[7]

J. Pettersson, B. Ramsey, D. Harrison, J. Power Sources 2006, 157, 28.

[8]

T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park, S. Jung, M. D. Kurkuri, H.-Y. Jung, Int. J. Hydrog. Energy 2017, 42, 4415.

[9]

P. Li, D. Qiu, L. Peng, S. Shen, X. Lai, Energy Convers. Manag. 2022, 254, 115210.

[10]

M. Gabbasa, K. Sopian, A. Fudholi, N. Asim, Int. J. Hydrog. Energy 2014, 39, 17765.

[11]

Y.-J. Wang, B. Fang, X. Wang, A. Ignaszak, Y. Liu, A. Li, L. Zhang, J. Zhang, Prog. Mater. Sci. 2018, 98, 108.

[12]

U. P. Azad, M. Singh, S. Ghosh, A. K. Singh, V. Ganesan, A. K. Singh, R. Prakash, Int. J. Hydrog. Energy 2018, 43, 20671.

[13]

M. Qu, X. Ding, Z. Shen, M. Cui, F. E. Oropeza, G. Gorni, V. A. De La Peña O’Shea, W. Li, D. C. Qi, K. H. L. Zhang, Chem. Mater. 2021, 33, 2062.

[14]

J.-I. Jung, H. Y. Jeong, J.-S. Lee, M. G. Kim, J. Cho, Angew. Chem. 2014, 126, 4670.

[15]

W. Xu, N. Apodaca, H. Wang, L. Yan, G. Chen, M. Zhou, D. Ding, P. Choudhury, H. Luo, ACS Catal. 2019, 9, 5074.

[16]

M. A. Kirsanova, V. D. Okatenko, D. A. Aksyonov, R. P. Forslund, J. T. Mefford, K. J. Stevenson, A. M. Abakumov, J. Mater. Chem. A 2019, 7, 330.

[17]

E. Fabbri, M. Nachtegaal, X. Cheng, T. J. Schmidt, Adv. Energy Mater. 2015, 5, 1402033.

[18]

M. Retuerto, F. Calle-Vallejo, L. Pascual, G. Lumbeeck, M. T Fernandez-Diaz, M. Croft, J. Gopalakrishnan, M. A. Peña, J. Hadermann, M. Greenblatt, S. Rojas, ACS Appl. Mater. Interfaces 2019, 11, 21454.

[19]

Y. Bu, G. Nam, S. Kim, K. Choi, Q. Zhong, J. H. Lee, Y. Qin, J. Cho, G. Kim, Small 2018, 14, 1802767.

[20]

J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc. 2016, 138, 2488.

[21]

K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler, W. Schuhmann, Electrochim. Acta 2016, 208, 25.

[22]

N. I. Kim, Y. J. Sa, T. S. Yoo, S. R. Choi, R. A. Afzal, T. Choi, Y. S. Seo, K. S. Lee, J. Y. Hwang, W. S. Choi, S. H. Joo, J. Y. Park, Sci. Adv. 2018, 4, eaap9360.

[23]

G. L. Chai, K. Qiu, M. Qiao, M. M. Titirici, C. Shang, Z. Guo, Energy Environ. Sci. 2017, 10, 1186.

[24]

S. Komini Babu, D. Spernjak, J. Dillet, A. Lamibrac, G. Maranzana, S. Didierjean, O. Lottin, R. L. Borup, R. Mukundan, Appl. Energy 2019, 254, 113659.

[25]

J. Jang, M. Sharma, D. Choi, Y. S. Kang, Y. Kim, J. Min, H. Sung, N. Jung, S. J. Yoo, ACS Appl. Mater. Interfaces 2019, 11, 27735.

[26]

M. Risch, Catalysts 2017, 7, 154.

[27]

C. Sun, J. A. Alonso, J. Bian, Adv. Energy Mater. 2020, 11, 2000459.

[28]

C. E. Beall, E. Fabbri, T. J. Schmidt, ACS Catal. 2021, 11, 3094.

[29]

A. Heel, P. Holtappels, P. Hug, T. Graule, Fuel Cells 2010, 10, 419.

[30]

D. Aegerter, M. Borlaf, E. Fabbri, A. H. Clark, M. Nachtegaal, T. Graule, T. J. Schmidt, Catalysts 2020, 10, 984.

[31]

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.

[32]

E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers, T. J. Schmidt, Nat. Mater. 2017, 16, 925.

[33]

E. Fabbri, T. J. Schmidt, ACS Catal. 2018, 8, 9765.

[34]

B.-J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, T. J. Schmidt, J. Am. Chem. Soc. 2019, 141, 5231.

[35]

J. Tulloch, S. W. Donne, J. Power Sources 2009, 188, 359.

[36]

K. A. Stoerzinger, W. , C. Li, Ariando, T. Venkatesan, Y. Shao-Horn, J. Phys. Chem. Lett. 2015, 6, 1435.

[37]

Y. Zhao, Y. Hang, Y. Zhang, Z. Wang, Y. Yao, X. He, C. Zhang, D. Zhang, Electrochim. Acta 2017, 232, 296.

[38]

V. Celorrio, A. S. Leach, H. Huang, S. Hayama, A. Freeman, D. W. Inwood, D. J. Fermin, A. E. Russell, ACS Catal. 2021, 11, 6431.

[39]

Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 8525.

[40]

M. Risch, K. A. Stoerzinger, B. Han, T. Z. Regier, D. Peak, S. Y. Sayed, C. Wei, Z. Xu, Y. Shao-Horn, J. Phys. Chem. C 2017, 121, 17682.

[41]

C. E. Beall, E. Fabbri, A. H. Clark, N. S. Yüzbasi, T. Graule, T. J. Schmidt, EcoMat 2023, 5, e12353.

[42]

P. N. Ross, H. Sokol, J. Electrochem. Soc. 1984, 131, 1742.

[43]

J. P. Meyers, R. M. Darling, J. Electrochem. Soc. 2006, 153, A1432.

[44]

J. S. Spendelow, A. Wieckowski, Phys. Chem. Chem. Phys. 2007, 9, 2654.

[45]

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546.

[46]

W. G. Hardin, J. T. Mefford, D. A. Slanac, B. B. Patel, X. Wang, S. Dai, X. Zhao, R. S. Ruoff, K. P. Johnston, K. J. Stevenson, Chem. Mater. 2014, 26, 3368.

[47]

H. Lee, O. Gwon, K. Choi, L. Zhang, J. Zhou, J. Park, J.-W. Yoo, J.-Q. Wang, J. H. Lee, G. Kim, ACS Catal. 2020, 10, 4664.

[48]

F. Calle-Vallejo, N. G. Inoglu, H.-Y. Su, J. I. Martínez, I. C. Man, M. T. M. Koper, J. R. Kitchin, J. Rossmeisl, Chem. Sci. 2013, 4, 1245.

[49]

A. S. Ryabova, F. S. Napolskiy, T. Poux, S. Y. Istomin, A. Bonnefont, D. M. Antipin, A. Y. Baranchikov, E. E. Levin, A. M. Abakumov, G. Kéranguéven, E. V. Antipov, G. A. Tsirlina, E. R. Savinova, Electrochim. Acta 2016, 187, 161.

[50]

P. P. Lopes, D. Y. Chung, X. Rui, H. Zheng, H. He, P. Farinazzo Bergamo Dias Martins, D. Strmcnik, V. R. Stamenkovic, P. Zapol, J. F. Mitchell, R. F. Klie, N. M. Markovic, J. Am. Chem. Soc. 2021, 143, 2741.

[51]

A. Boucly, L. Artiglia, E. Fabbri, D. Palagin, D. Aegerter, D. Pergolesi, Z. Novotny, N. Comini, J. T. Diulus, T. Huthwelker, M. Ammann, T. J. Schmidt, J. Mater. Chem. A 2022, 10, 2434.

[52]

X. Li, H. Zhao, J. Liang, Y. Luo, G. Chen, X. Shi, S. Lu, S. Gao, J. Hu, Q. Liu, X. Sun, J. Mater. Chem. A 2021, 9, 6650.

[53]

F. R. Afje, M. H. Ehsani, Mater. Res. Express 2018, 5, 45012.

[54]

A. Arabi, M. H. Ehsani, M. Fazli, J. Mater. Sci. Mater. Electron. 2019, 30, 19001.

[55]

M. Ghiasi, A. Malekzadeh, Sep. Purif. Technol. 2014, 134, 12.

[56]

X. Cheng, E. Fabbri, Y. Yamashita, I. E. Castelli, B. Kim, M. Uchida, R. Haumont, I. Puente-Orench, T. J. Schmidt, ACS Catal. 2018, 8, 9567.

[57]

S. Zeljković, J. Miyawaki, D. Vranković, E. Tervoort, R. Hauert, T. Kotegawa, T. Ivas, Process. Appl. Ceram. 2018, 12, 342.

[58]

A. S. Patra, N. V. Kumar, D. Barpuzary, M. De, M. Qureshi, Mater. Lett. 2014, 131, 125.

[59]

A. Santoni, G. Speranza, M. R. Mancini, F. Padella, L. Petrucci, S. Casadio, J. Phys. Condens. Matter 1999, 11, 3387.

[60]

R. K. Hocking, R. Brimblecombe, L. Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.

[61]

K. D. Kwon, K. Refson, G. Sposito, Geochim. Cosmochim. Acta 2009, 73, 4142.

[62]

F. F. Marafatto, M. L. Strader, J. Gonzalez-Holguera, A. Schwartzberg, B. Gilbert, J. Peña, Proc. Natl. Acad. Sci. USA 2015, 112, 4600.

[63]

A. H. Clark, P. Steiger, B. Bornmann, S. Hitz, R. Frahm, D. Ferri, M. Nachtegaal, J. Synchrotron Radiat. 2020, 27, 681.

[64]

A. H. Clark, J. Imbao, R. Frahm, M. Nachtegaal, J. Synchrotron Radiat. 2020, 27, 551.

[65]

B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.

[66]

T. Binninger, E. Fabbri, A. Patru, M. Garganourakis, J. Han, D. F. Abbott, O. Sereda, R. Kötz, A. Menzel, M. Nachtegaal, T. J. Schmidt, J. Electrochem. Soc. 2016, 163, H906.

[67]

T. J. Schmidt, H. A. Gasteiger, G. D. Stäb, P. M. Urban, D. M. Kolb, R. J. Behm, J. Electrochem. Soc. 1998, 145, 2354.

[68]

T. J. Schmidt, H. A. Gasteiger, in Handbook of Fuel Cells: Fundamentals, Technology and Applications (Eds: W. Vielstich, H. A. Gasteiger, A. Lamm), John Wiley & Sons, New York 2003, pp. 316–33.

[69]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[70]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[71]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[72]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505.

[73]

A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 11002.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/