A “Concentrated Ionogel-in-Ceramic” Silanization Composite Electrolyte with Superior Bulk Conductivity and Low Interfacial Resistance for Quasi-Solid-State Li Metal Batteries

Wangshu Hou , Zongyuan Chen , Shengxian Wang , Fengkun Wei , Yanfang Zhai , Ning Hu , Shufeng Song

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12736

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12736 DOI: 10.1002/eem2.12736
RESEARCH ARTICLE

A “Concentrated Ionogel-in-Ceramic” Silanization Composite Electrolyte with Superior Bulk Conductivity and Low Interfacial Resistance for Quasi-Solid-State Li Metal Batteries

Author information +
History +
PDF

Abstract

The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries (LMBs) is expected to demonstrate peculiarity of superior bulk conductivity, low interfacial resistances, and good compatibility against both Li-metal anode and high-voltage cathode. There is no composite electrolyte to synchronously meet all these requirements yet, and the battery performance is inhibited by the absence of effective electrolyte design. Here we report a unique “concentrated ionogel-in-ceramic” silanization composite electrolyte (SCE) and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+ transport pathways and tackles the interface issues to respond all the aforementioned requirements. It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content (70 wt%) and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase. Notably, the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 × 10-3 S cm-1 at 25 °C, an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13 Ω cm2, and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi0.5Co0.2Mn0.3O2 (NCM523) quasi-solid-state LMB. This composite electrolyte design strategy can be extended to other quasi–/solid-state LMBs.

Keywords

composite electrolyte / concentrated ionogel-in-ceramic / interfacial resistance / silane / solid electrolyte interphase

Cite this article

Download citation ▾
Wangshu Hou, Zongyuan Chen, Shengxian Wang, Fengkun Wei, Yanfang Zhai, Ning Hu, Shufeng Song. A “Concentrated Ionogel-in-Ceramic” Silanization Composite Electrolyte with Superior Bulk Conductivity and Low Interfacial Resistance for Quasi-Solid-State Li Metal Batteries. Energy & Environmental Materials, 2024, 7(5): e12736 DOI:10.1002/eem2.12736

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Chen, G. T. Kim, J. K. Kim, M. Zarrabeitia, M. Kuenzel, H. P. Liang, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 2021, 11, 2101339.

[2]

R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[3]

D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 2019, 5, 2326.

[4]

Y. Zheng, Y. Z. Yao, J. H. Ou, M. Li, D. Luo, H. Z. Dou, Z. Q. Li, K. Amine, A. P. Yu, Z. W. Chen, Chem. Soc. Rev. 2020, 49, 8790.

[5]

C. Ma, K. Dai, H. S. Hou, X. B. Ji, L. B. Chen, D. C. Ivey, W. F. Wei, Adv. Sci. 2018, 5, 1700996.

[6]

X. Yu, A. Manthiram, Energy Storage Mater. 2021, 34, 282.

[7]

Z. P. Wan, D. N. Lei, W. Yang, C. Liu, K. Shi, X. G. Hao, L. Shen, W. Lv, B. H. Li, Q. H. Yang, F. Y. Kang, Y. B. He, Adv. Funct. Mater. 2019, 29, 1805301.

[8]

Y. A. Xu, K. Wang, X. D. Zhang, Y. B. Ma, Q. F. Peng, Y. Gong, S. Yi, H. Guo, X. Zhang, X. Z. Sun, H. C. Gao, S. Xin, Y. G. Guo, Y. W. Ma, Adv. Funct. Mater. 2023, 13, 2204377.

[9]

W. Liu, S. W. Lee, D. C. Lin, F. F. Shi, S. Wang, A. D. Sendek, Y. Cui, Nat. Energy 2017, 2, 17035.

[10]

B. J. Sung, P. N. Didwal, R. Verma, A. G. Nguyen, D. R. Chang, C. J. Park, Electrochim. Acta 2021, 392, 139007.

[11]

X. Y. Huang, J. F. Wu, X. W. Wang, Y. Tian, F. Zhang, M. H. Yang, B. B. Xu, B. Wu, X. Y. Liu, H. X. Li, ACS Appl. Energy Mater. 2021, 4, 9368.

[12]

R. M. Wang, F. Liu, J. F. Duan, Y. Ren, M. J. Li, J. X. Cao, ACS Appl. Energy Mater. 2022, 4, 13912.

[13]

Y. Liang, N. Chen, F. Li, R. Chen, ACS Appl. Mater. Interfaces 2022, 14, 47822.

[14]

D. C. Zhang, X. J. Xu, Y. L. Qin, S. M. Ji, Y. P. Huo, Z. S. Wang, Z. B. Liu, J. D. Shen, J. Liu, Chem. A Eur. J. 2019, 26, 1720.

[15]

J. B. Goodenough, Acc. Chem. Res. 2013, 46, 1053.

[16]

H. Duan, M. Fan, W. P. Chen, J. Y. Li, P. F. Wang, W. P. Wang, J. L. Shi, Y. X. Yin, L. J. Wan, Y. G. Guo, Adv. Mater. 2019, 31, 1807789.

[17]

C. G. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhiev, B. L. Wu, T. U. Schulli, D. L. Danilov, Y. J. Wei, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2021, 11, 2003939.

[18]

M. B. Dixit, M. Regala, F. Shen, X. Xiao, K. B. Hatzell, ACS Appl. Mater. Interfaces 2019, 11, 2022.

[19]

F. Shen, M. B. Dixit, X. Xiao, K. B. Hatzell, ACS Energy Lett. 2018, 3, 1056.

[20]

M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, L. F. Kourkoutis, Nature 2018, 560, 345.

[21]

J. Zheng, Y.-Y. Hu, ACS Appl. Mater. Interfaces 2018, 10, 4113.

[22]

J. N. Liang, J. Luo, Q. Sun, X. F. Yang, R. Y. Li, X. L. Sun, Energy Storage Mater. 2019, 21, 308.

[23]

T. F. Zhang, W. J. He, W. Zheng, T. Wang, P. Li, Z. M. Sun, X. B. Yu, Chem. Sci. 2020, 11, 8686.

[24]

X. G. Han, Y. H. Gong, K. Fu, X. F. He, G. T. Hitz, J. Q. Dai, A. Pearse, B. Y. Liu, H. Wang, G. Rublo, Y. F. Mo, V. Thangadural, E. D. Wachsman, L. B. Hu, Nat. Mater. 2017, 16, 572.

[25]

Y. R. Zhong, Y. J. Xie, S. Hwang, Q. Wang, J. J. Cha, D. Su, H. L. Wang, Angew. Chem. Int. Ed. 2020, 59, 14003.

[26]

M. X. Wang, P. Y. Zhang, M. Shamsi, J. L. Thelen, W. Qian, V. K. Truong, J. Ma, J. Hu, M. D. Dickey, Nat. Mater. 2022, 21, 359.

[27]

J. Le Bideau, L. Viau, A. Vioux, Chem. Soc. Rev. 2011, 40, 907.

[28]

Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.

[29]

Z. K. Tang, J. S. Tse, L. M. Liu, J. Phys. Chem. Lett. 2016, 7, 4795.

[30]

M. Okoshi, C. P. Chou, H. Nakai, J. Phys. Chem. B 2018, 122, 2600.

[31]

X. L. Fan, L. Chen, X. Ji, T. Deng, S. Y. Hou, J. Chen, J. Zheng, F. Wang, J. J. Jiang, K. Xu, C. S. Wang, Chem 2018, 4, 174.

[32]

M. A. Ansarifar, L. Chong, J. Zhang, A. Bell, R. J. Ellis, Int. J. Adhes. Adhes. 2003, 23, 177.

[33]

J. S. Gandhi, T. L. Metroke, M. A. Eastman, W. J. Van Ooij, A. Apblett, Corrosion 2006, 62, 612.

[34]

D. Stanicki, S. Boutry, S. Laurent, L. Wacheul, E. Nicolas, D. Crombez, L. V. Elst, D. L. J. Lafontaine, R. N. Muller, J. Mater. Chem. B 2014, 2, 387.

[35]

D. Chen, F. Chen, H. Zhang, X. Yin, Y. Zhou, Cellul. 2016, 23, 941.

[36]

Y.-L. Li, C. F. Kuan, C. H. Chen, H. C. Kuan, M. C. Yip, S. L. Chiu, C. L. Chiang, Mater. Chem. Phys. 2012, 134, 677.

[37]

Y. T. Li, X. Chen, A. Dolocan, Z. M. Cui, S. Xin, L. G. Xue, H. H. Xu, K. Park, J. B. Goodenough, J. Am. Chem. Soc. 2018, 140, 6448.

[38]

M. Nakayama, T. Horie, R. Natsume, S. Hashimura, N. Tanibata, H. Takeda, H. Maeda, M. Kotobuki, J. Phys. Chem. C 2023, 127, 7595.

[39]

H. Y. Huo, X. N. Li, Y. P. Sun, X. T. Lin, K. Doyle-Davis, J. W. Liang, X. J. Gao, R. Y. Li, H. Huang, X. X. Guo, X. L. Sun, Nano Energy 2020, 73, 104836.

[40]

H. Yamada, T. Ito, S. P. Kammampata, V. Thangadurai, ACS Appl. Mater. Interfaces 2020, 12, 36119.

[41]

C. G. Pantano, T. N. Wittberg, Surf. Interface Anal. 1990, 15, 498.

[42]

H. Y. Huo, Y. Chen, N. Zhao, X. T. Lin, J. Luo, X. F. Yang, Y. L. Liu, X. X. Guo, X. L. Sun, Nano Energy 2019, 61, 119.

[43]

H. Li, R. Wang, H. Hu, W. Liu, Appl. Surf. Sci. 2008, 255, 1894.

[44]

P. M. Dietrich, S. Glamsch, C. Ehlert, A. Lippitz, N. Kulak, W. E. S. Unger, Appl. Surf. Sci. 2016, 363, 406.

[45]

M. B. Dixit, W. Zaman, N. Hortance, S. Vujic, B. Harkey, F. Y. Shen, W. Y. Tsai, V. De Andrade, X. C. Chen, N. Balke, K. B. Hatzell, Joule 2020, 4, 207.

[46]

K. Wang, X. Zhang, Z. Hao, Funct. Mater. Lett. 2023, 16, 2340008.

[47]

Y. Wang, Q. Yi, X. Xu, L. Lu, Funct. Mater. Lett. 2023, 16, 2340002.

[48]

C. J. Jafta, X. G. Sun, H. L. Lyu, H. Chen, B. P. Thapaliya, W. T. Heller, M. J. Cuneo, R. T. Mayes, M. P. Paranthaman, S. Dai, C. A. Bridges, Adv. Funct. Mater. 2021, 31, 2008708.

[49]

L. Santos, J. Swiatowska, V. Lair, S. Zanna, A. Seyeux, A. Melendez-Ceballos, P. Tran-Van, M. Cassir, P. Marcus, J. Power Sources 2017, 364, 61.

[50]

T. R. Wang, J. Duan, B. Zhang, W. Luo, X. Ji, H. H. Xu, Y. Huang, L. Q. Huang, Z. Y. Song, J. Y. Wen, C. S. Wang, Y. H. Huang, J. B. Goodenough, Energ. Environ. Sci. 2022, 15, 1325.

[51]

W. S. Hou, Y. F. Zhai, Z. Y. Chen, C. Y. Liu, C. Y. Ouyang, N. Hu, X. Liang, P. Paoprasert, S. F. Song, Appl. Phys. Lett. 2023, 122, 43903.

[52]

S. W. Li, C. Wang, C. X. Meng, Y. X. Ning, G. H. Zhang, Q. Fu, J. Energy Chem. 2022, 67, 718.

[53]

X. D. Ren, S. R. Chen, H. Lee, D. H. Mei, M. H. Engelhard, S. D. Burton, W. G. Zhao, J. M. Zheng, Q. Y. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J. G. Zheng, W. Xu, Chem 2018, 4, 1877.

[54]

N. Piao, S. F. Liu, B. Zhang, X. Ji, X. L. Fan, L. Wang, P. F. Wang, T. Jin, S. C. Liou, H. C. Yang, J. J. Jiang, K. Xu, M. A. Schroeder, X. M. He, C. S. Wang, ACS Energy Lett. 2021, 6, 1839.

[55]

H. Sun, G. Z. Zhu, Y. M. Zhu, M. C. Lin, H. Chen, Y. Y. Li, W. H. Hung, B. Zhou, X. Wang, Y. X. Bai, Adv. Mater. 2020, 32, 2001741.

[56]

Q. D. Wang, Z. P. Yao, C. L. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Y. Kang, A. Aspuru-Guzik, Y. S. Hu, M. Wagemaker, B. H. Li, Nat. Commun. 2020, 11, 4188.

[57]

D. Luo, L. Zheng, Z. Zhang, M. Li, Z. W. Chen, R. G. Cui, Y. B. Shen, G. R. Li, R. F. Feng, S. J. Zhang, G. P. Jiang, L. W. Chen, A. P. Yu, X. Wang, Nat. Commun. 2019, 12, 186.

[58]

K. N. Wood, G. Teeter, ACS Appl. Energy Mater. 2018, 1, 4493.

[59]

H. T. Zhang, Y. B. Huang, Z. P. Liu, Appl. Surf. Sci. 2021, 537, 147983.

[60]

H. Irfan, A. M. Shanmugharaj, Appl. Surf. Sci. 2022, 586, 152806.

[61]

S. Ko, T. Obukata, T. Shimada, N. Takenaka, M. Nakayama, A. Yamada, Y. Yamada, Nat. Energy 2022, 7, 1217.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/