Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries

Yuping Zhang , Hongzhi Zheng , Xing Tong , Hao Zhuo , Wu Yang , Yuling Chen , Ge Shi , Zehong Chen , Linxin Zhong , Xinwen Peng

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12735

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12735 DOI: 10.1002/eem2.12735
RESEARCH ARTICLE

Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries

Author information +
History +
PDF

Abstract

The separator is an essential component of sodium-ion batteries (SIBs) to determine their electrochemical performances. However, the separator with high mechanical strength, good electrolyte wettability and excellent electrochemical performance remains an open challenge. Herein, a new separator consisting of amphoteric nanofibers with abundant functional groups was fabricated through supramolecular assembly of natural polymers for SIB. The uniform nanoporous structure, remarkable mechanical properties and abundant functional groups (e.g. –COOH, –NH2 and –OH) endow the separator with lower dissolution activation energy and higher ion migration numbers. These metrics enable the separator to lower the barrier for desolvation of Na+, accelerate the migration of Na+, and generate more stable solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). The battery assembled with the amphoteric nanofiber separator shows higher specific capacity and better stability than that assembled with glass fiber (GF) separator.

Keywords

amphoteric / nanofiber / self-assembly / Separator / sodium-ion batteries

Cite this article

Download citation ▾
Yuping Zhang, Hongzhi Zheng, Xing Tong, Hao Zhuo, Wu Yang, Yuling Chen, Ge Shi, Zehong Chen, Linxin Zhong, Xinwen Peng. Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12735 DOI:10.1002/eem2.12735

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Zhang, R. Wang, J. Zeng, K. Shi, C. Zhu, X. Yan, Adv. Funct. Mater. 2021, 31, 2106047.

[2]

J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.

[3]

J. Feng, S. Luo, K. Cai, S. Yan, Q. Wang, Y. Zhang, X. Liu, Chin. Chem. Lett. 2022, 33, 2316.

[4]

Z. Liu, S. Chu, J. Wu, C. Cheng, L. Zhang, S. Guo, H. Zhou, Chem. Eng. J. 2022, 435, 134944.

[5]

X. Li, J. Xu, H. Li, H. Zhu, S. Guo, H. Zhou, Adv. Sci. (Weinh) 2022, 9, e2105280.

[6]

T.-Y. Yu, Y.-K. Sun, J. Mater. Chem. A 2022, 10, 23639.

[7]

B. Deng, N. Yue, H. Dong, Q. Gui, L. Xiao, J. Liu, Chin. Chem. Lett. 2021, 32, 826.

[8]

S. Qiao, Q. Zhou, M. Ma, H. K. Liu, S. X. Dou, S. Chong, ACS Nano 2023, 17, 11220.

[9]

M. Yang, X. Chang, L. Wang, X. Wang, M. Gu, H. Huang, L. Tang, Y. Zhong, H. Xia, Adv. Mater. 2023, 35, e2208705.

[10]

J. Zhao, X. X. He, W. H. Lai, Z. Yang, X. H. Liu, L. Li, Y. Qiao, Y. Xiao, L. Li, X. Wu, S. L. Chou, Adv. Energy Mater. 2023, 13, 2300149.

[11]

Y. Zhang, L. Fang, W. Sun, B. Shi, X. Chen, Y. Gu, K. Ding, Z. Wang, K. Sun, Chin. Chem. Lett. 2021, 32, 1144.

[12]

J. Yu, N. Dong, B. Liu, G. Tian, S. Qi, D. Wu, Chem. Eng. J. 2022, 442, 136314.

[13]

B. Yuan, K. Wen, D. Chen, Y. Liu, Y. Dong, C. Feng, Y. Han, J. Han, Y. Zhang, C. Xia, A. Sun, W. He, Adv. Funct. Mater. 2021, 31, 2101420.

[14]

Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang, Y. Su, J. Zheng, Chem. Eng. J. 2022, 438, 135550.

[15]

Y. Suharto, Y. Lee, J.-S. Yu, W. Choi, K. J. Kim, J. Power Sources 2018, 376, 184.

[16]

J. Zhu, M. Yanilmaz, K. Fu, C. Chen, Y. Lu, Y. Ge, D. Kim, X. Zhang, J. Membr. Sci. 2016, 504, 89.

[17]

J. H. Jo, C. H. Jo, Z. Qiu, H. Yashiro, L. Shi, Z. Wang, S. Yuan, S. T. Myung, Front. Chem. 2020, 8, 153.

[18]

R. Arunkumar, A. P. Vijaya Kumar Saroja, R. Sundara, ACS Appl. Mater. Interfaces 2019, 11, 3889.

[19]

A. P. Vijaya Kumar Saroja, R. A. Kumar, B. C. Moharana, M. Kamaraj, S. Ramaprabhu, J. Electroanal. Chem. 2020, 859, 113864.

[20]

J. Mun, T. Yim, Y. Gap Kwon, K. Jae Kim, Chem. Eng. J. 2021, 405, 125844.

[21]

L. Zhang, G. Feng, X. Li, S. Cui, S. Ying, X. Feng, L. Mi, W. Chen, J. Membr. Sci. 2019, 577, 137.

[22]

M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, J. W. Choi, Adv. Energy Mater. 2012, 2, 645.

[23]

P. J. Kim, V. G. Pol, Adv. Energy Mater. 2018, 8, 1802665.

[24]

J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[25]

T. Wang, Q. Liu, J. Zhou, X. Wang, B. Lu, Adv. Energy Mater. 2022, 12, 2202357.

[26]

N. Wang, W. Liu, H. Liao, Z. Li, Y. Chen, G. Zeng, Int. J. Biol. Macromol. 2023, 250, 126078.

[27]

H. Zhuo, X. Tong, H. Zheng, Z. Chen, B. Gou, W. Yuan, L. P. Wu, L. Zhong, X. Peng, J. Lu, Adv. Funct. Mater. 2023, 33, 2214148.

[28]

N. Singh, S. Riyajuddin, K. Ghosh, S. K. Mehta, A. Dan, ACS Appl. Nano Mater. 2019, 2, 7379.

[29]

G. Cui, X. Wang, J. Xun, T. Lou, Int. Biodeter. Biodegr. 2017, 123, 269.

[30]

Y. Song, N. Wang, L.-y. Yang, Y. g. Wang, D. Yu, X.-k. Ouyang, Ind. Eng. Chem. Res. 2019, 58, 6394.

[31]

X. Zhao, X. Wang, T. Lou, J. Hazard. Mater. 2021, 403, 124054.

[32]

X. Guo, X. Li, Y. Xu, J. Chen, M. Lv, M. Yang, W. Chen, J. Chem. Phys. 2022, 126, 8238.

[33]

H. Zhou, J. Gu, Y. Wei, W. Zhang, J. Kang, J.-Q. Huang, B. Zhang, C. Hu, X. Lin, J. Power Sources 2023, 558, 232649.

[34]

A. Ojanguren, N. Mittal, E. Lizundia, M. Niederberger, ACS Appl. Mater. Interfaces 2021, 13, 21250.

[35]

J. Wang, Z. Xu, Q. Zhang, X. Song, X. Lu, Z. Zhang, A. J. Onyianta, M. Wang, M. M. Titirici, S. J. Eichhorn, Adv. Mater. 2022, 34, e2206367.

[36]

X. Ma, F. Qiao, M. Qian, Y. Ye, X. Cao, Y. Wei, N. Li, M. Sha, Z. Zi, J. Dai, Scr. Mater. 2021, 190, 153.

[37]

W. Chen, L. Zhang, C. Liu, X. Feng, J. Zhang, L. Guan, L. Mi, S. Cui, ACS Appl. Mater. Interfaces 2018, 10, 23883.

[38]

T. W. Zhang, B. Shen, H. B. Yao, T. Ma, L. L. Lu, F. Zhou, S. H. Yu, Nano Lett. 2017, 17, 4894.

[39]

J. L. Yang, X. X. Zhao, W. Zhang, K. Ren, X. X. Luo, J. M. Cao, S. H. Zheng, W. L. Li, X. L. Wu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202300258.

[40]

J. Qin, H. Shi, K. Huang, P. Lu, P. Wen, F. Xing, B. Yang, M. Ye, Y. Yu, Z. S. Wu, Nat. Commun. 2021, 12, 5786.

[41]

C. Li, S. Liu, C. Shi, G. Liang, Z. Lu, R. Fu, D. Wu, Nat. Commun. 2019, 10, 1363.

[42]

M. Zhu, G. Wang, X. Liu, B. Guo, G. Xu, Z. Huang, M. Wu, H. K. Liu, S. X. Dou, C. Wu, Angew. Chem. Int. Ed. 2020, 59, 6596.

[43]

N. Mittal, S. Tien, E. Lizundia, M. Niederberger, Small 2022, 18, e2107183.

[44]

Y. Jiang, Y. Yang, F. Ling, G. Lu, F. Huang, X. Tao, S. Wu, X. Cheng, F. Liu, D. Li, H. Yang, Y. Yao, P. Shi, Q. Chen, X. Rui, Y. Yu, Adv. Mater. 2022, 34, 2109439.

[45]

J. Song, G. Jeong, A.-J. Lee, J. H. Park, H. Kim, Y.-J. Kim, ACS Appl. Mater. Interfaces 2015, 7, 27206.

[46]

J. Wang, Y. Gao, D. Liu, G. Zou, L. Li, C. Fernandez, Q. Zhang, R. Mezzenga, Q. Peng, Adv. Mater. 2023, 11, 2304942.

[47]

X. Li, X. Liu, Y. Xiang, Q. Zheng, X. Wei, D. Lin, Chin. Chem. Lett. 2022, 33, 3197.

[48]

Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang, J. Zhang, H. Dai, Z. Hu, P. Yan, C. Liu, S. Sun, S. L. Chou, C. Shen, Angew. Chem. Int. Ed. 2021, 60, 11481.

[49]

J. Zhang, K. Song, L. Mi, C. Liu, X. Feng, J. Zhang, W. Chen, C. Shen, J. Phys. Chem. Lett. 2020, 11, 1435.

[50]

X. Casas, M. Niederberger, E. Lizundia, ACS Appl. Mater. Interfaces 2020, 12, 29264.

[51]

W. Zhang, J. Zhang, X. Liu, H. Li, Y. Guo, C. Geng, Y. Tao, Q. H. Yang, Adv. Funct. Mater. 2022, 32, 2201205.

[52]

J. Zhang, H. Wen, L. Yue, J. Chai, J. Ma, P. Hu, G. Ding, Q. Wang, Z. Liu, G. Cui, L. Chen, Small 2017, 13, 1601530.

[53]

X. Li, J. Zhang, X. Guo, C. Peng, K. Song, Z. Zhang, L. Ding, C. Liu, W. Chen, S. Dou, Adv. Mater. 2023, 35, e2203547.

[54]

M. Yang, Q. Ning, C. Fan, X. Wu, Chin. Chem. Lett. 2021, 32, 895.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/