Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries
Yuping Zhang , Hongzhi Zheng , Xing Tong , Hao Zhuo , Wu Yang , Yuling Chen , Ge Shi , Zehong Chen , Linxin Zhong , Xinwen Peng
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12735
Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries
The separator is an essential component of sodium-ion batteries (SIBs) to determine their electrochemical performances. However, the separator with high mechanical strength, good electrolyte wettability and excellent electrochemical performance remains an open challenge. Herein, a new separator consisting of amphoteric nanofibers with abundant functional groups was fabricated through supramolecular assembly of natural polymers for SIB. The uniform nanoporous structure, remarkable mechanical properties and abundant functional groups (e.g. –COOH, –NH2 and –OH) endow the separator with lower dissolution activation energy and higher ion migration numbers. These metrics enable the separator to lower the barrier for desolvation of Na+, accelerate the migration of Na+, and generate more stable solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). The battery assembled with the amphoteric nanofiber separator shows higher specific capacity and better stability than that assembled with glass fiber (GF) separator.
amphoteric / nanofiber / self-assembly / Separator / sodium-ion batteries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |