Pseudocapacitive Heteroatom-Doped Carbon Cathode for Aluminum-Ion Batteries with Ultrahigh Reversible Stability

Jiahui Li , Jehad K. El-Demellawi , Guan Sheng , Jonas Björk , Fanshuai Zeng , Jie Zhou , Xiaxia Liao , Junwei Wu , Johanna Rosen , Xingjun Liu , Husam N. Alshareef , Shaobo Tu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12733

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12733 DOI: 10.1002/eem2.12733
RESEARCH ARTICLE

Pseudocapacitive Heteroatom-Doped Carbon Cathode for Aluminum-Ion Batteries with Ultrahigh Reversible Stability

Author information +
History +
PDF

Abstract

Aluminum (Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium. Nonetheless, given the nascent stage of advancement in Al-ion batteries (AIBs), attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging. Herein, we demonstrate a C3N4-derived layered N,S heteroatom–doped carbon, obtained at different pyrolysis temperatures, as a cathode material for AIBs, encompassing the diffusion–controlled intercalation and surface-induced capacity with ultrahigh reversibility. The developed layered N,S-doped corbon (N,S-C) cathode, synthesized at 900 °C, delivers a specific capacity of 330 mAh g–1 with a relatively high coulombic efficiency of ∼85% after 500 cycles under a current density of 0.5 A g-1. Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms, the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance (61 mAh g–1 at 20 A g–1) and ultrahigh reversibility (90 mAh g–1 at 5 A g–1 after 10 000 cycles).

Keywords

2D carbon / adsorption energy / heteroatoms-doping / high capacity / long cycling life

Cite this article

Download citation ▾
Jiahui Li, Jehad K. El-Demellawi, Guan Sheng, Jonas Björk, Fanshuai Zeng, Jie Zhou, Xiaxia Liao, Junwei Wu, Johanna Rosen, Xingjun Liu, Husam N. Alshareef, Shaobo Tu. Pseudocapacitive Heteroatom-Doped Carbon Cathode for Aluminum-Ion Batteries with Ultrahigh Reversible Stability. Energy & Environmental Materials, 2024, 7(5): e12733 DOI:10.1002/eem2.12733

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.Wu, H.Yang, Y.Bai, C. Wu, Adv. Mater. 2019, 31, 1806510.

[2]

D.Yu, K.Li, G.Ma, F.Ru, X.Zhang, W. Luo, P.Hu, D.Chen, H.Wang, ChemSusChem 2023, 16, e202201595.

[3]

N. P.Stadie, S.Wang, K. V.Kravchyk, M. V.Kovalenko, ACS Nano 2017, 11, 1911.

[4]

S.Wang, K. V.Kravchyk, F.Krumeich, M. V.Kovalenko, ACS Appl. Mater. Interfaces 2017, 9, 28478.

[5]

M.Walter, K. V.Kravchyk, C.Böfer, R.Widmer, M. V.Kovalenko, Adv. Mater. 2018, 30, 1705644.

[6]

K. V.Kravchyk, M. V.Kovalenko, Adv. Energy Mater. 2019, 9, 1901749.

[7]

B.Wang, Y.Huang, Y.Wang, H. Wang, Adv. Funct. Mater. 2023, 33, 2212287.

[8]

F.Ambroz, T. J.Macdonald, T.Nann, Adv. Energy Mater. 2017, 7, 1602093.

[9]

S. K.Das, S.Mahapatra, H.Lahan, J. Mater. Chem. A 2017, 5, 6347.

[10]

N.Jayaprakash, S. K.Das, L. A.Archer, Chem. Commun. 2011, 47, 12610.

[11]

T.Koketsu, J.Ma, B. J.Morgan, M. Body, C.Legein, W.Dachraoui, M.Giannini, A.Demortière, M.Salanne, F.Dardoize, H.Groult, O. J.Borkiewicz, K. W. Chapman, P.Strasser, D.Dambournet, Nat. Mater. 2017, 16, 1142.

[12]

Y.Hu, D.Ye, B.Luo, H. Hu, X.Zhu, S.Wang, L.Li, S.Peng, L. Wang, Adv. Mater. 2018, 30, 1703824.

[13]

J.-M.Cao, I. V.Zatovsky, Z.-Y.Gu, J.-L.Yang, X.-X.Zhao, J.-Z.Guo, H. Xu, X.-L.Wu, Prog. Mater. Sci. 2023, 135, 101105.

[14]

M.-C.Lin, M.Gong, B.Lu, Y.Wu, D.-Y.Wang, M. Guan, M.Angell, C.Chen, J.Yang, B.Hwang, H. Dai, Nature 2015, 520, 325.

[15]

C.Li, S.Dong, R.Tang, X. Ge, Z.Zhang, C.Wang, Y.Lu, L.Yin, Environ. Sci. 2018, 11, 3201.

[16]

A.VahidMohammadi, A. Hadjikhani, S.Shahbazmohamadi, M.Beidaghi, ACS Nano 2017, 11, 11135.

[17]

J.Li, F.Zeng, J. KEl-Demellawi, Q.Lin, S.Xi, J.Wu, J.Tang, X.Zhang, X. Liu, S.Tu, ACS Appl. Mater. Interfaces 2022, 14, 45254.

[18]

S.Guo, Z.Deng, M.Li, B.Jiang, C.Tian, Q. Pan, H.Fu, Angew. Chem. Int. Ed. Engl. 2016, 55, 1830.

[19]

X.Wang, G.Sun, P.Routh, D. H. Kim, W.Huang, P.Chen, Chem. Soc. Rev. 2014, 43, 7067.

[20]

Y.Liu, Y.Qiao, G.Wei, S. Li, Z.Lu, X.Wang, X.Lou, Energy Storage Mater. 2018, 11, 274.

[21]

J.Xu, M.Wang, N. P.Wickramaratne, M.Jaroniec, S.Dou, L.Dai, Adv. Mater. 2015, 27, 2042.

[22]

H.-G.Wang, Z.Wu, F.-L.Meng, D.-L. Ma, X.-L.Huang, L.-M.Wang, X.-B.Zhang, ChemSusChem 2013, 6, 56.

[23]

X.Wang, X.Cao, L.Bourgeois, H. Guan, S.Chen, Y.Zhong, D.-M.Tang, H.Li, T.Zhai, L.Li, Y.Bando, D.Golberg, Adv. Funct. Mater. 2012, 22, 2682.

[24]

X.Liu, J.Zhang, S.Guo, N. Pinnad, J. Mater. Chem. A 2016, 4, 1423.

[25]

J.Liu, Y.Zhang, L.Zhang, F. Xie, A.Vasileff, S.-Z.Qiao, Adv. Mater. 2019, 31, 1901261.

[26]

Z.Liu, Y.Zhu, J. KEl-Demellawi, D. B.Velusamy, A. MEl-Zohry, O. M.Bakr, O. F.Mohammed, H. N.Alshareef, ACS Energy Lett. 2019, 4, 2315.

[27]

Y.Cao, L.Xiao, M. L.Sushko, W. Wang, B.Schwenzer, J.Xiao, Z.Nie, L. V.Saraf, Z. Yang, J.Liu, Nano Lett. 2012, 12, 3783.

[28]

G.Wang, M.Yu, X.Feng, Chem. Soc. Rev. 2021, 50, 23882443.

[29]

R. D.Mckerracher, A. Holland, A.Cruden, R. G. A.Wills, Carbon 2019, 144, 333e341.

[30]

F.Tuinstra, J. L.Koenig, J. Chem. Phys. 1970, 53, 1126.

[31]

L. G.Cançado, A. Jorio, E. H. M.Ferreira, F.Stavale, C. A.Achete, R. B.Capaz, M. V. O.Moutinho, A. Lombardo, T. S.Kulmala, A. C.Ferrari, Nano Lett. 2011, 11, 3190.

[32]

A. C.Ferrari, D. M.Basko, Nat. Nanotechnol. 2013, 8, 235.

[33]

S.Wang, L.Xia, L.Yu, L.Zhang, H.Wang, X. W. Lou, Adv. Energy Mater. 2016, 6, 1502217.

[34]

Z.-Q.Liu, H.Cheng, N.Li, T. Y.Ma, Y.-Z.Su, Adv. Mater. 2016, 28, 3777.

[35]

W.-H.Li, Q.-L.Ning, X.-T.Xi, B.-H. Hou, J.-Z.Guo, Y.Yang, B.Chen, X.-L.Wu, Adv. Mater. 2019, 31, 1804766.

[36]

B. A.Lindquist, T. H.Dunning, Theor. Chem. Accounts 2014, 133, 1443.

[37]

M. A.Reddy, M.Helen, A.Groß, M.Fichtner, H.Euchner, ACS Energy Lett. 2018, 3, 2851.

[38]

D. Y.Wang, C. Y.Wei, M. C.Lin, C. J. Pan, H. L.Chou, H. A.Chen, M.Gong, Y.Wu, C.Yuan, M.Angell, Y. J. Hsieh, Y. H.Chen, C. Y.Wen, C. W.Chen, B. J.Hwang, C. C. Chen, H.Dai, Nat. Commun. 2017, 8, 14283.

[39]

C.Thomsen, S.Reich, Phys. Rev. Lett. 2000, 85, 5214.

[40]

D.Wei, Y.Liu, Y.Wang, H. Zhang, L.Huang, G.Yu, Nano Lett. 2009, 9, 1752.

[41]

J.Zhang, Q.Zhang, X.Qu, G.Xu, B.Fan, Z. Yan, B.Feng, F.Gui, L.Yang, Appl. Surf. Sci. 2022, 574, 151559.

[42]

C.Ma, X.Shao, D.Cao, J. Mater. Chem. 2012, 22, 8911.

[43]

J. KEl-Demellawi, A. E. Mansour, A. MEl-Zohry, M. N.Hedhili, J.Yin, A.-H. M.Emwas, P.Maity, X.Xu, O. M.Bakr, O. F. Mohammed, H. N.Alshareef, ACS Mat. Lett. 2022, 4, 2480.

[44]

Y.Gao, Z.Wang, L.Chen, J. Mater. Chem. A 2015, 3, 23420.

[45]

H.Lindström, S. Södergren, A.Solbrand, H.Rensmo, J.Hjelm, A.Hagfeldt, S.-E.Lindquist, J. Phys. Chem. B 1997, 101, 7717.

[46]

G.Kresse, J.Furthmüller, Phys. Rev. B 1994, 54, 11169.

[47]

P. E.Blöchl, Phys. Rev. B 1994, 50, 17953.

[48]

M.Dion, H.Rydberg, E.Schröder, D. C.Langreth, B. I.Lundqvist, Phys. Rev. Lett. 2004, 92, 246401.

[49]

I.Hamada, Phys. Rev. B 2014, 89, 121103(R).

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/