Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries

Derong Luo , Huizi Zhao , Feng Liu , Hai Xu , Xiaoyu Dong , Bing Ding , Hui Dou , Xiaogang Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12732

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12732 DOI: 10.1002/eem2.12732
RESEARCH ARTICLE

Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Metal-covalent organic frameworks (MCOF) as a bridge between covalent organic framework (COF) and metal organic framework (MOF) possess the characteristics of open metal sites, structure stability, crystallinity, tunability as well as porosity, but still in its infancy. In this work, a covalent organic framework DT-COF with a keto-enamine structure synthesized from the condensation of 3,3′-dihydroxybiphenyl diamine (DHBD) and triformylphloroglucinol (TFP) was coordinated with Cu2+ by a simple post-modification method to a obtain a copper-coordinated metal-covalent organic framework of Cu-DT COF. The isomerization from a keto-enamine structure of DT-COF to a enol-imine structure of Cu-DT COF is induced due to the coordination interaction of Cu2+. The structure change of Cu-DT COF induces the change of the electron distribution in the Cu-DT COF, which greatly promotes the activation and deep Li-storage behavior of the COF skeleton. As anode material for lithium-ion batteries (LIBs), Cu-DT COF exhibits greatly improved electrochemical performance, retaining the specific capacities of 760 mAh g-1 after 200 cycles and 505 mAh g-1 after 500 cycles at a current density of 0.5 A g-1. The preliminary lithium storage mechanism studies indicate that Cu2+ is also involved in the lithium storage process. A possible mechanism for Cu-DT COF was proposed on the basis of FT-IR, XPS, EPR characterization and electrochemical analysis. This work enlightens a novel strategy to improve the energy storage performance of COF and promotes the application of COF and MCOF in LIBs.

Keywords

anode material / copper-coordination / lithium-ion batteries / metal-covalent organic frameworks

Cite this article

Download citation ▾
Derong Luo, Huizi Zhao, Feng Liu, Hai Xu, Xiaoyu Dong, Bing Ding, Hui Dou, Xiaogang Zhang. Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12732 DOI:10.1002/eem2.12732

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[2]

M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

[3]

J. Xie, J. Li, X. Li, H. Lei, W. Zhuo, X. Li, G. Hong, K. N. Hui, L. Pan, W. Mai, CCS Chem. 2021, 3, 89.

[4]

J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo, H. Wang, J. B. Na, X. Li, Y. Yamauchi, W. Mai, Adv. Energy Mater. 2020, 10, 1903455.

[5]

X. Li, J. Li, L. Ma, C. Yu, Z. Ji, L. Pan, W. Mai, Energy Environ. Mater. 2022, 5, 458.

[6]

N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404.

[7]

T. B. Schon, B. T. McAllister, P. F. Li, D. S. Seferos, Chem. Soc. Rev. 2016, 45, 6345.

[8]

L. M. Zhou, S. Jo, M. Park, L. Fang, K. Zhang, Y. Fan, Z. Hao, Y. M. Kang, Adv. Energy Mater. 2021, 11, 2003054.

[9]

Z. Xiao, G. Xiang, Q. Zhang, Y. Wang, Y. Yang, Energy Environ. Mater. 2023, 6, e12399.

[10]

M. R. Raj, J. Yun, D. K. Son, G. Lee, Energy Environ. Mater. 2023, 6, e12553.

[11]

A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.

[12]

H. M. El Kaderi, J. R. Hunt, J. L. Mendoza Cortés, A. P. Côté, R. E. Taylor, M. O’Keeffe, O. M. Yaghi, Science 2007, 316, 268.

[13]

L. Cusin, H. J. Peng, A. Ciesielski, P. Samorì, Angew. Chem. Int. Ed. 2021, 133, 14356.

[14]

D. R. Luo, J. Zhang, H. Z. Zhao, H. Xu, X. Y. Dong, L. Y. Wu, B. Ding, H. Dou, X. G. Zhang, Chem. Commun. 2023, 59, 6853.

[15]

H. Wang, Y. Yang, X. Z. Yuan, W. L. Teo, Y. Wu, L. Tang, Y. L. Zhao, Mater. Today 2022, 53, 106.

[16]

S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 1807, 2018, 141.

[17]

R. R. Liang, S. Y. Jiang, A. Ru-Han, X. Zhao, Chem. Soc. Rev. 2020, 49, 3920.

[18]

J. Li, X. c. Jing, Q. q. Li, S. w. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565.

[19]

M. Cui, H. Zhao, Y. Qin, S. Zhang, R. Zhao, M. Zhang, W. Yu, G. Gao, X. Hu, Y. Su, K. Xi, S. Ding, Energy Environ. Mater. 2023,

[20]

Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu, H. Wang, Y. Fu, H. Guo, Energy Environ. Mater. 2023, 6, e12345.

[21]

X. J. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.

[22]

L. J. Kong, M. Liu, H. Huang, Y. H. Xu, X. H. Bu, Adv. Energy Mater. 2021, 12, 2100172.

[23]

D. Y. Zhu, G. Xu, M. Barnes, Y. Li, C. P. Tseng, Z. Zhang, J. J. Zhang, Y. Y. Zhu, S. Khalil, M. M. Rahman, Adv. Funct. Mater. 2021, 31, 2100505.

[24]

X. B. Yang, C. Lin, D. D. Han, G. Li, C. Huang, J. Liu, X. L. Wu, L. P. Zhai, L. W. Mi, J. Mater. Chem. A 2022, 10, 3989.

[25]

Z. D. Lei, Q. S. Yang, Y. Xu, S. Y. Guo, W. W. Sun, H. Liu, L. P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018,

[26]

Z. Q. Luo, L. J. Liu, J. X. Ning, K. X. Lei, Y. Lu, F. J. Li, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 9443.

[27]

S. Haldar, K. Roy, R. Kushwaha, S. Ogale, R. Vaidhyanathan, Adv. Energy Mater. 2019, 9, 1902428.

[28]

G. F. Zhao, H. Li, Z. H. Gao, L. Xu, Z. Y. Mei, S. Cai, T. T. Liu, X. F. Yang, H. Guo, X. L. Sun, Adv. Funct. Mater. 2021, 31, 2101019.

[29]

J. L. Segura, S. Royuela, M. M. Ramos, Chem. Soc. Rev. 2019, 48, 3903.

[30]

Y. L. Zhao, X. H. Xu, C. Xu, D. Y. Meng, X. Q. Liang, J. K. Qiu, New J. Chem. 2022, 46, 11980.

[31]

R. Zhao, Z. B. Liang, R. Q. Zou, Q. Xu, Aust. Dent. J. 2018, 2, 2235.

[32]

Z. Y. Zhang, H. Yoshikawa, K. Awaga, J. Am. Chem. Soc. 2014, 136, 16112.

[33]

H. Xu, L. L. Zhao, X. M. Liu, Q. S. Huang, Y. Q. Wang, C. X. Hou, Y. Y. Hou, J. Wang, F. Dang, J. T. Zhang, Adv. Funct. Mater. 2020, 30, 2006188.

[34]

J. Q. Dong, X. Han, Y. Liu, H. Y. Li, Y. Cui, Angew. Chem. Int. Ed. 2020, 132, 13826.

[35]

W.-K. Han, Y. Liu, X. Yan, Z.-G. Gu, Mater. Chem. Front. 2023, 7, 2995.

[36]

Y. He, G. Liu, Z. Liu, J. Bi, Y. Yu, L. Li, ACS Energy Lett. 1857, 2023, 8.

[37]

Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu, J. Wang, Nat. Commun. 2023, 14, 1147.

[38]

T. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057.

[39]

J. J. Huang, X. Han, S. Yang, Y. Y. Cao, C. Yuan, Y. Liu, J. G. Wang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 8996.

[40]

A. M. Kaczmarek, Y. Y. Liu, M. K. Kaczmarek, H. Liu, F. Artizzu, L. D. Carlos, P. Van Der Voort, Angew. Chem. Int. Ed. 1948, 2020, 132.

[41]

M. H. Wang, L. Zhu, S. Zhang, Y. Lou, S. R. Zhao, Q. Tan, L. H. He, M. Du, Sensors Actuators B Chem. 2021, 338, 129826.

[42]

S. C. Yao, X. R. Zhao, X. Y. Wan, X. Y. Wang, T. Huang, J. M. Zhang, L. L. Li, Mater. Horiz. 2021, 8, 3457.

[43]

S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524.

[44]

J. Park, A. C. Hinckley, Z. H. Huang, D. W. Feng, A. A. Yakovenko, M. Lee, S. C. Chen, X. D. Zou, Z. N. Bao, J. Am. Chem. Soc. 2018, 140, 14533.

[45]

Q. Jiang, P. X. Xiong, J. J. Liu, Z. Xie, Q. C. Wang, X. Q. Yang, E. Y. Hu, Y. Cao, J. Sun, Y. Y. Xu, Angew. Chem. Int. Ed. 2020, 59, 5273.

[46]

L. H. Li, X. L. Feng, X. H. Cui, Y. X. Ma, S. Y. Ding, W. Wang, J. Am. Chem. Soc. 2017, 139, 6042.

[47]

S. Haldar, D. Kaleeswaran, D. Rase, K. Roy, S. Ogale, R. Vaidhyanathan, Nanoscale Horiz. 2020, 5, 1264.

[48]

T. Duguet, A. Gavrielides, J. Esvan, T. Mineva, C. Lacaze Dufaure, J. Phys. Chem. C 2019, 123, 30917.

[49]

C. Furlani, G. Polzonetti, C. Preti, G. Tosi, Inorg. Chim. Acta 1983, 73, 105.

[50]

B. Gao, B. Tan, Y. Liu, C. W. Wang, Y. G. He, Y. Y. Huang, Surf. Interface Anal. 2019, 51, 566.

[51]

S. Gu, S. F. Wu, L. J. Cao, M. C. Li, N. Qin, J. Zhu, Z. Q. Wang, Y. Z. Li, Z. Q. Li, J. J. Chen, J. Am. Chem. Soc. 2019, 141, 9623.

[52]

H. Zhao, H. Chen, C. Y. Xu, Z. H. Li, B. Ding, H. Dou, X. G. Zhang, ACS App. Energy Mater. 2021, 4, 11377.

[53]

T. Li, W. D. Zhang, Y. Liu, Y. X. Li, C. Cheng, H. Y. Zhu, X. Y. Yan, Z. J. Li, Z. G. Gu, J. Mater. Chem. A 2019, 7, 19676.

[54]

M. H. Wang, C. B. Wang, J. M. Liu, F. L. Rong, L. H. He, Y. F. Lou, Z. H. Zhang, M. Du, ACS Sustain. Chem. Eng. 2021, 9, 5872.

[55]

A. M. Kaczmarek, H. S. Jena, C. Krishnaraj, H. Rijckaert, S. K. Veerapandian, A. Meijerink, P. Van Der Voort, Angew. Chem. Int. Ed. 2021, 60, 3727.

[56]

X. Y. Xu, Z. N. Zhang, R. Xiong, G. D. Lu, J. Zhang, W. Ning, S. Z. Hu, Q. L. Feng, S. L. Qiao, Nano-Micro Lett. 2023, 15, 25.

[57]

X. H. Rui, N. Ding, J. Liu, C. Li, C. H. Chen, Electrochim. Acta 2010, 55, 2384.

[58]

Q. Ni, Y. Bai, Y. Li, L. Ling, L. Li, G. Chen, Z. Wang, H. Ren, F. Wu, C. Wu, Small 2018, 14, 1702864.

[59]

D. W. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. H. Huang, M. Lee, L. Shaw, S. C. Chen, A. A. Yakovenko, A. Kulkarni, J. P. Xiao, K. Fredrickson, J. B. Tok, X. D. Zou, Y. Cui, Z. A. Bao, Nat. Energy 2018, 3, 30.

[60]

X. Xu, S. Zhang, K. Xu, H. Chen, X. Fan, N. Huang, J. Am. Chem. Soc. 2023, 145, 1022.

[61]

J. Yan, Y. Cui, M. Xie, G. Z. Yang, D. S. Bin, D. Li, Angew. Chem. Int. Ed. 2021, 133, 24672.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/