Direct Synthesis of Layer-Tunable and Transfer-Free Graphene on Device-Compatible Substrates Using Ion Implantation Toward Versatile Applications

Bingkun Wang , Jun Jiang , Kevin Baldwin , Huijuan Wu , Li Zheng , Mingming Gong , Xuehai Ju , Gang Wang , Caichao Ye , Yongqiang Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12730

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12730 DOI: 10.1002/eem2.12730
RESEARCH ARTICLE

Direct Synthesis of Layer-Tunable and Transfer-Free Graphene on Device-Compatible Substrates Using Ion Implantation Toward Versatile Applications

Author information +
History +
PDF

Abstract

Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications. State of the art in the field is currently a two-step process: a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition (CVD) followed by delicate layer transfer onto device-relevant substrates. Here, we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area, high quality, and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process. Carbon (C) ion implantation was performed on Cu–Ni film deposited on a variety of device-relevant substrates. A well-controlled number of layers of graphene, primarily monolayer and bilayer, is precisely controlled by the equivalent fluence of the implanted C-atoms (1 monolayer ∼4 × 1015 C-atoms/cm2). Upon thermal annealing to promote Cu-Ni alloying, the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu. As a result, the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis. After removing the alloyed Cu-like surface layer, the layer-tunable graphene on the desired substrate is directly realized. The layer-selectivity, high quality, and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films. Molecular dynamics (MD) simulations using the reactive force field (ReaxFF) were performed to elucidate the graphene formation mechanisms in this novel synthesis approach. With the wide use of ion implantation technology in the microelectronics industry, this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.

Keywords

device applications / dual-metal smart Janus substrate / growth mechanism / Ion implantation / layer-tunable and transfer-free graphene

Cite this article

Download citation ▾
Bingkun Wang, Jun Jiang, Kevin Baldwin, Huijuan Wu, Li Zheng, Mingming Gong, Xuehai Ju, Gang Wang, Caichao Ye, Yongqiang Wang. Direct Synthesis of Layer-Tunable and Transfer-Free Graphene on Device-Compatible Substrates Using Ion Implantation Toward Versatile Applications. Energy & Environmental Materials, 2024, 7(5): e12730 DOI:10.1002/eem2.12730

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Deng, Z. Liu, H. Peng, Adv. Mater. 2019, 31, 1800996.

[2]

Z. Cai, B. Liu, X. Zou, H. Cheng, Chem. Rev. 2018, 118, 6091.

[3]

H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin, B. Jia, Small 2021, 17, 2007311.

[4]

Y. Wei, R. Yang, Natl. Sci. Rev. 2018, 6, 324.

[5]

G. Wang, M. Zhang, D. Chen, Q. L. Guo, X. F. Feng, T. C. Niu, X. S. Liu, A. Li, J. W. Lai, D. Sun, Z. M. Liao, Y. Q. Wang, P. K. Chu, G. Q. Ding, X. M. Xie, Z. F. Di, X. Wang, Nat. Commun. 2018, 9, 5168.

[6]

Y. Sun, D. G. Papageorgiou, C. J. Humphreys, D. J. Dunstan, P. Puech, J. E. Proctor, C. Bousige, D. Machon, A. San-Miguel, Appl. Phys. Rev. 2021, 8, 021310.

[7]

L. Lin, H. Peng, Z. Liu, Nat. Mater. 2019, 18, 520.

[8]

M. Huang, V. B. Pavel, Z. Wang, B. Mandakini, Z. Yang, S. Jin, B. Wang, J. P. Hyo, Y. Li, D. Qu, Y. Kwon, X. Chen, H. Sun, M. G. Willinger, J. Y. Won, S. R. Rodney, Nat. Nanotechnol. 2020, 15, 289.

[9]

B. Jiang, S. Wang, J. Sun, Z. Liu, Small 2021, 17, 2008017.

[10]

A. Khan, R. R. Kumar, J. Cong, M. Imran, D. Yang, X. Yu, Adv. Mater. Interfaces 2022, 9, 2100977.

[11]

Q. Shi, T. Klaudia, Q. T. Huy, X. Yang, Y. Liu, U. Sami, L. Liu, T. Barbara, B. Alicja, J. Sun, L. Fu, Z. Liu, H. R. Mark, Adv. Mater. Interfaces 2020, 7, 1902024.

[12]

J. Zhang, L. Sun, K. Jia, X. Liu, T. Cheng, H. Peng, L. Lin, Z. Liu, ACS Nano 2020, 14, 10796.

[13]

K. Yan, L. Fu, H. Peng, Z. Liu, Acc. Chem. Res. 2013, 46, 2263.

[14]

J. Cong, A. Khan, J. Li, Y. Wang, M. Xu, D. Yang, X. Yu, ACS Appl. Electron. Mater. 2021, 3, 5048.

[15]

Q. Yu, J. Lian, S. Sujitra, H. Li, Y. Chen, S. Pei, Appl. Phys. Lett. 2008, 93, 113103.

[16]

A. Khan, J. Cong, R. R. Kumar, S. Ahmed, D. Yang, X. Yu, ACS Appl. Nano Mater. 2022, 5, 17544.

[17]

L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. Ma, Z. Zhang, Q. Fu, L. Peng, X. Bao, H. Cheng, Nat. Commun. 2012, 3, 699.

[18]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.

[19]

S. Chen, L. Brown, M. Levendorf, W. Cai, S. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, R. S. Ruoff, ACS Nano 2011, 5, 1321.

[20]

X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, Z. Liu, J. Phys. Chem. C 2011, 115, 11976.

[21]

M. H. Rümmeli, M. Zeng, S. Melkhanova, S. Gorantla, A. Bachmatiuk, L. Fu, C. Yan, S. Oswald, R. G. Mendes, D. Makarov, O. Schmidt, J. Eckert, Chem. Mater. 2013, 25, 3880.

[22]

Y. Wu, H. Chou, H. Ji, Q. Wu, S. Chen, W. Jiang, Y. Hao, J. Kang, Y. Ren, R. D. Piner, R. S. Ruoff, ACS Nano 2012, 6, 7731.

[23]

D. Wan, T. Lin, B. Bi, F. Huang, X. Xie, I. Chen, M. Jiang, Adv. Funct. Mater. 2012, 22, 1033.

[24]

Y. Zhao, Y. Li, Y. Chen, Y. Chen, D. Zhou, Z. Zhao, Nano Res. 2021, 14, 1280.

[25]

Z. Wang, Z. Xue, M. Zhang, Y. Wang, X. Xie, P. K. Chu, P. Zhou, Z. Di, X. Wang, Small 2017, 13, 1700929.

[26]

H. Wang, G. Yu, Adv. Mater. 2016, 28, 4956.

[27]

L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Chem. Rev. 2018, 118, 9281.

[28]

F. Liu, P. Li, H. An, P. Peng, B. McLean, F. Ding, Adv. Funct. Mater. 2022, 32, 2203191.

[29]

S. Garaj, W. Hubbard, J. A. Golovchenko, Appl. Phys. Lett. 2010, 97, 183103.

[30]

M. Huang, R. S. Ruoff, Acc. Chem. Res. 2020, 53, 800.

[31]

J. Lee, C. Jang, J. Kim, D. Shin, S. Kim, S. Choi, K. Belay, R. G. Elliman, Carbon 2014, 66, 267.

[32]

G. Wang, M. Zhang, S. Liu, X. M. Xie, G. Q. Ding, Y. Wang, P. K. Chu, H. Gao, W. Ren, Q. Yuan, P. Zhang, X. Wang, Z. F. Di, Adv. Funct. Mater. 2015, 25, 3666.

[33]

L. Ma, W. Ren, H. Cheng, Small 2019, 3, 1900049.

[34]

A. Kaplan, Z. Yuan, J. D. Benck, A. G. Rajan, X. S. Chu, Q. H. Wang, M. S. Strano, Chem. Soc. Rev. 2017, 46, 4530.

[35]

X. Yang, M. Yan, Nano Res. 2020, 13, 599.

[36]

M. A. Rehman, I. Akhtar, W. Choi, K. Akbar, A. Farooq, S. Hussain, M. A. Shehzad, S. Chun, J. Jung, Y. Seo, Carbon 2018, 132, 157.

[37]

L. Hu, Y. Dong, Y. Xie, F. Qian, P. Chang, M. Fan, J. Deng, C. Xu, Small 2023, 19, 2206738.

[38]

W. Hou, Y. Xu, Y. Zhang, X. Yao, Y. Xu, Carbon 2023, 204, 427.

[39]

A. Khan, M. R. Habib, C. Jingkun, M. Xu, D. Yang, X. Yu, J. Phys. Chem. C 2021, 125, 1774.

[40]

A. Khan, S. M. Islam, S. Ahmed, R. R. Kumar, M. R. Habib, K. Huang, M. Hu, X. Yu, D. Yang, Adv. Sci. 2018, 5, 1800050.

[41]

X. Li, L. Colombo, R. S. Ruoff, Adv. Mater. 2016, 28, 6264.

[42]

G. Lu, T. Wu, P. Yang, Y. Yang, Z. Jin, W. Chen, S. Jia, H. Wang, G. Zhang, J. Sun, P. M. Ajayan, J. Lou, X. Xie, M. Jiang, Adv. Sci. 2017, 4, 1700076.

[43]

M. Huang, M. Biswal, H. Park, S. Jin, D. Qu, S. Hong, Z. Zhu, L. Qiu, D. Luo, X. Liu, Z. Yang, Z. Liu, Y. Huang, H. Lim, W. Yoo, F. Ding, Y. Wang, Z. Lee, R. S. Ruoff, ACS Nano 2018, 12, 6117.

[44]

G. Wang, Z. D. Liu, S. W. Yang, L. Zheng, J. R. Li, M. H. Zhao, W. Zhu, A. L. Xu, Q. L. Guo, D. Chen, G. Q. Ding, Appl. Phys. Lett. 2019, 115, 132104.

[45]

T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, M. Jiang, Nat. Mater. 2016, 15, 43.

[46]

J. E. Mueller, A. C. T. van Duin, W. A. Goddard, J. Phys. Chem. C 2010, 114, 4939.

[47]

A. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235.

[48]

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, S. Fan, Nano Lett. 2013, 13, 6170.

[49]

W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Sci. Bull. 2018, 63, 282.

[50]

H. Guo, X. Wang, H. Lu, L. Bao, H. Peng, K. Qian, J. Ma, G. Li, L. Huang, X. Lin, Y. Zhang, S. Du, S. T. Pantelides, H. Gao, 2D Mater 2019, 6, 45044.

[51]

X. Chen, R. Xiang, P. Zhao, H. An, T. Inoue, S. Chiashi, S. Maruyama, Carbon 2016, 107, 852.

[52]

L. Liu, H. Zhou, R. Cheng, W. Yu, Y. Liu, Y. Chen, J. Shaw, X. Zhong, Y. Huang, X. Duan, ACS Nano 2012, 6, 8241.

[53]

W. Fang, A. L. Hsu, R. Caudillo, Y. Song, A. G. Birdwell, E. Zakar, M. Kalbac, M. Dubey, T. Palacios, M. S. Dresselhaus, P. T. Araujo, J. Kong, Nano Lett. 2013, 13, 1541.

[54]

D. L. Mafra, J. Kong, K. Sato, R. Saito, M. S. Dresselhaus, P. T. Araujo, Nano Lett. 2012, 12, 2883.

[55]

D. Li, M. Chen, Q. Zong, Z. Zhang, Nano Lett. 2017, 17, 6353.

[56]

H. Lee, I. I. Nedrygailov, Y. Lee, C. Lee, H. Choi, J. Choi, C. Choi, J. Y. Park, Nano Lett. 2016, 16, 1650.

[57]

S. Schuler, J. E. Muench, A. Ruocco, O. Balci, D. V. Thourhout, V. Sorianello, M. Romagnoli, T. Watanabe, I. Taniguchi, A. C. Goykhman, T. Ferrari, Nat. Commun. 2021, 12, 3733.

[58]

X. Feng, Z. He, Z. Liu, W. Zhu, M. Zhao, S. Yang, Q. Guo, D. Chen, G. Ding, G. Wang, Adv. Opt. Mater. 2021, 9, 2100387.

[59]

M. Zhao, Z. Xue, W. Zhu, G. Wang, S. Tang, Z. Liu, G. Ding, D. Chen, P. Chu, G. Ding, Z. Di, ACS Appl. Mater. Inter. 2020, 12, 15606.

[60]

H. Tian, A. Hu, Q. Liu, X. He, X. Guo, Adv. Opt. Mater. 2020, 8, 1901741.

[61]

K. Chen, C. Zhang, X. Zang, F. Ma, Y. Chen, Y. Dan, Small 2021, 17, 2006307.

[62]

S. Riazimehr, S. Kataria, R. Bornemann, P. H. Bolivar, F. J. G. Ruiz, O. Engström, A. Godoy, M. C. Lemme, ACS Photonics 2017, 4, 1506.

[63]

D. Sinha, J. Lee, Nano Lett. 2014, 14, 4660.

[64]

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 2016, 12, 595.

[65]

L. Li, J. Wang, L. Kang, W. Liu, L. Yu, B. Zheng, M. L. Brongersma, D. H. Werner, S. Lan, Y. Shi, Y. Xu, X. Wang, ACS Nano 2020, 14, 16634.

[66]

Y. Li, Y. Zhang, Y. Wang, J. Sun, Q. You, M. Zhu, L. Li, T. Deng, Adv. Funct. Mater. 2023,

[67]

A. Levi, M. Kirshner, O. Sinai, E. Peretz, O. Meshulam, A. Ghosh, N. Gotlib, C. Stern, S. Yuan, F. Xia, D. Naveh, ACS Photonics 2019, 6, 1910.

[68]

P. Xiang, G. Wang, S. Yang, Z. Liu, L. Zheng, J. Li, A. Xu, M. Zhao, W. Zhu, Q. Guo, D. Chen, RSC Adv. 2019, 9, 37512.

[69]

J. Li, Q. Guo, N. Zhang, S. Yang, Z. Liu, A. Xu, W. Tao, G. Wang, D. Chen, G. Ding, J. Mater. Chem. C 2018, 6, 9682.

[70]

R. Zhang, J. Fu, H. Wang, X. Wei, X. Li, H. Shi, Adv. Funct. Mater. 2022, 32, 2202376.

[71]

A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 2001, 105, 9396.

[72]

X. Zhang, R. A. van Santen, E. J. M. Hensen, ACS Catal. 2015, 5, 596.

[73]

J. E. Mueller, A. C. T. van Duin, W. A. Goddard, J. Phys. Chem. C 2010, 114, 5675.

[74]

S. Plimpton, J. Comput. Phys. 1995,

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/