Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries: A Study of Li8SeN2, Li7PSe6, and Li6PSe5X (X = Cl, Br, I)

Wenshan Xiao , Mingwei Wu , Huan Wang , Yan Zhao , Qiu He

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12729

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12729 DOI: 10.1002/eem2.12729
RESEARCH ARTICLE

Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries: A Study of Li8SeN2, Li7PSe6, and Li6PSe5X (X = Cl, Br, I)

Author information +
History +
PDF

Abstract

To achieve high-energy-density and safe lithium-metal batteries (LMBs), solid-state electrolytes (SSEs) that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance. This study presents a systematic exploration of selenide-based materials as potential SSE candidates. Initially, Li8SeN2 and Li7PSe6 were selected from 25 ternary selenides based on their ability to form stable interfaces with lithium metal. Subsequently, their favorable electronic insulation and mechanical properties were verified. Furthermore, extensive theoretical investigations were conducted to elucidate the fundamental mechanisms underlying Li-ion migration in Li8SeN2, Li7PSe6, and derived Li6PSe5X (X = Cl, Br, I). Notably, the highly favorable Li-ion conduction mechanism of vacancy diffusion was identified in Li6PSe5Cl and Li7PSe6, which exhibited remarkably low activation energies of 0.21 and 0.23 eV, and conductivity values of 3.85 × 10-2 and 2.47 × 10-2 S cm-1 at 300 K, respectively. In contrast, Li-ion migration in Li8SeN2 was found to occur via a substitution mechanism with a significant diffusion energy barrier, resulting in a high activation energy and low Li-ion conductivity of 0.54 eV and 3.6 × 10-6 S cm-1, respectively. Throughout this study, it was found that the ab initio molecular dynamics and nudged elastic band methods are complementary in revealing the Li-ion conduction mechanisms. Utilizing both methods proved to be efficient, as relying on only one of them would be insufficient. The discoveries made and methodology presented in this work lay a solid foundation and provide valuable insights for future research on SSEs for LMBs.

Keywords

Li-ion transport / lithium argyrodites / lithium-metal battery / selenides / solid-state electrolytes

Cite this article

Download citation ▾
Wenshan Xiao, Mingwei Wu, Huan Wang, Yan Zhao, Qiu He. Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries: A Study of Li8SeN2, Li7PSe6, and Li6PSe5X (X = Cl, Br, I). Energy & Environmental Materials, 2024, 7(5): e12729 DOI:10.1002/eem2.12729

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Cheng, R. Zhang, C. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.

[2]

X. Shen, H. Liu, X.-B. Cheng, C. Yan, J.-Q. Huang, Energy Stor. Mater. 2018, 12, 161.

[3]

Q. Zhou, B. Xu, P. H. Chien, Y. Li, B. Huang, N. Wu, H. Xu, N. S. Grundish, Y. Y. Hu, J. B. Goodenough, Small Methods 2020, 4, 2000764.

[4]

Q. Zhao, Z. Cao, X. Wang, H. Chen, Y. Shi, Z. Cheng, Y. Guo, B. Li, Y. Gong, Z. Du, S. Yang, J. Am. Chem. Soc. 2023, 145, 21242.

[5]

J. Lei, Z. Liu, Z. Li, H. Wang, S. Dmytro, Q. Zhang, J. Energy Storage 2023, 72, 108080.

[6]

S. Kim, J.-S. Kim, L. Miara, Y. Wang, S.-K. Jung, S. Y. Park, Z. Song, H. Kim, M. Badding, J. Chang, V. Roev, G. Yoon, R. Kim, J.-H. Kim, K. Yoon, D. Im, K. Kang, Nat. Commun. 1883, 2022, 13.

[7]

F. Zhao, Q. Sun, C. Yu, S. Zhang, K. Adair, S. Wang, Y. Liu, Y. Zhao, J. Liang, C. Wang, X. Li, X. Li, W. Xia, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, ACS Energy Lett. 2020, 5, 1035.

[8]

X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Adv. Mater. 2022, 35, 2206402.

[9]

J. Sang, B. Tang, K. Pan, Y.-B. He, Z. Zhou, Acc. Chem. Res. 2023, 4, 472.

[10]

J. E. Lee, K. H. Park, J. C. Kim, T. U. Wi, A. R. Ha, Y. B. Song, D. Y. Oh, J. Woo, S. H. Kweon, S. J. Yeom, W. Cho, K. Kim, H. W. Lee, S. K. Kwak, Y. S. Jung, Adv. Mater. 2022, 34, 2200083.

[11]

G. L. Zhu, C. Z. Zhao, H. J. Peng, H. Yuan, J. K. Hu, H. X. Nan, Y. Lu, X. Y. Liu, J. Q. Huang, C. He, J. Zhang, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2101985.

[12]

A. Hu, Z. Liao, J. Huang, Y. Zhang, Q. Yang, Z. Zhang, L. Yang, S.-i. Hirano, Chem. Eng. J. 2022, 448, 137661.

[13]

J. Janek, W. G. Zeier, Nat. Energy 2023, 8, 230.

[14]

K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Adv. Energy Mater. 2021, 11, 2002689.

[15]

X. Feng, H. Fang, N. Wu, P. Liu, P. Jena, J. Nanda, D. Mitlin, Joule 2022, 6, 543.

[16]

J. Sang, B. Tang, Y. Qiu, Y. Fang, K. Pan, Z. Zhou, Energy. Environ. Mater. 2023,

[17]

Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni, C.-W. Nan, L.-Z. Fan, InfoMat 2022, 4, e12292.

[18]

T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.

[19]

Q. He, B. Yu, Z. Li, Y. Zhao, Energy Environ. Mater. 2019, 2, 264.

[20]

Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026.

[21]

C. Yu, S. Ganapathy, N. J. de Klerk, I. Roslon, E. R. van Eck, A. P. Kentgens, M. Wagemaker, J. Am. Chem. Soc. 2016, 138, 11192.

[22]

L. Shen, Y. Wang, J. Yu, G. Zhou, J. Liu, M. J. Robson, Y. Zhou, M. B. Effat, F. Ciucci, J. Mater. Chem. A 2023, 11, 18984.

[23]

Y. Y. Zhang, P. Chen, Q. Y. Wang, Q. Wang, K. Zhu, K. Ye, G. L. Wang, D. X. Cao, J. Yan, Q. Zhang, Adv. Energy Mater. 2021, 11, 2101712.

[24]

J. J. Li, W. Zhang, W. T. Zheng, Small 2023, 20, 2305021.

[25]

J. Yuan, B. Yu, D. Pan, X. Hu, J. Chen, M. Aminua, Y. Liu, L. Sheng, Y. Chen, Y. Wu, H. Zhan, Z. Wen, Adv. Funct. Mater. 2023, 33, 2305503.

[26]

Z. C. Liu, D. Wang, H. L. Mu, C. J. Zhang, L. Q. Wu, L. Feng, X. Y. Sun, G. S. Zhang, J. Wu, G. W. Wen, J. Alloys Compd. 2021, 884, 161151.

[27]

S. Feng, Z. Wang, H. Guo, X. Li, G. Yan, Q. Li, J. Wang, Electrochim. Acta 2023, 439, 141637.

[28]

S.-H. Bo, Y. Wang, G. Ceder, J. Mater. Chem. A 2016, 4, 9044.

[29]

N. J. J. de Klerk, I. Rosłoń, M. Wagemaker, Chem. Mater. 2016, 28, 7955.

[30]

H. Wan, J. P. Mwizerwa, X. Qi, X. Liu, X. Xu, H. Li, Y.-S. Hu, X. Yao, ACS Nano 2018, 12, 2809.

[31]

M. Jiang, Z. W. Chen, A. Rao, L. X. Chen, X. T. Zu, C. V. Singh, J. Mater. Chem. C 2022, 10, 18294.

[32]

S. Nachimuthu, H. J. Cheng, H. Lai, Y. H. Cheng, R. T. Kuo, W. G. Zeier, B. J. Hwang, J. C. Jiang, Mater. Today Chem. 2022, 26, 101223.

[33]

Y. Zhu, X. He, Y. Mo, Adv. Sci. 2017, 4, 1600517.

[34]

A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.

[35]

A. P. Maltsev, I. V. Chepkasov, A. G. Kvashnin, A. R. Oganov, Crystals 2023, 13, 756.

[36]

K. K. Abady, A. Niksirat, N. Karpourazar, M. Pourfath, presented at ICEE 2021:29th Iranian Conference on Electrical Engineering, Tehran, May 2021.

[37]

J. Xu, L. L. Xu, Z. L. Zhang, B. Sun, Y. Jin, Q. Z. Jin, H. Liu, G. X. Wang, Energy Stor. Mater. 2022, 47, 223.

[38]

J. Q. Cao, Y. H. Xie, Y. Yang, X. H. Wang, W. Y. Li, Q. L. Zhang, S. Ma, S. Y. Cheng, B. A. Lu, Adv. Sci. 2022, 9, 2104689.

[39]

Y. F. Tang, L. Q. Zhang, J. Z. Chen, H. M. Sun, T. T. Yang, Q. N. Liu, Q. Huang, T. Zhu, J. Y. Huang, Energy Environ. Sci. 2021, 14, 602.

[40]

W. Xiao, M. Wu, H. Wang, Q. He, Y. Zhao, J. Mater. Chem. A 2022, 10, 24226.

[41]

A. Sohib, M. A. Irham, J. Karunawan, S. P. Santosa, O. Floweri, F. Iskandar, ACS Appl. Mater. Interfaces 2023, 15, 16562.

[42]

X. Yao, J. Wang, S. R. Lin, C. Z. Tao, X. Z. Zhang, W. Wang, C. C. Zhao, L. A. Wang, J. L. Bao, Y. G. Wang, T. X. Liu, Adv. Energy Mater. 2023, 13, 2203233.

[43]

F. D. Han, J. Yue, X. Y. Zhu, C. S. Wang, Adv. Energy Mater. 2018, 8, 1703644.

[44]

H. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Angew. Chem. Int. Ed. 2008, 47, 755.

[45]

S. T. Kong, H. J. Deiseroth, C. Reiner, O. Gun, E. Neumann, C. Ritter, D. Zahn, Chemistry 2010, 16, 2198.

[46]

K. Okhotnikov, T. Charpentier, S. Cadars, J. Cheminform. 2016, 8, 17.

[47]

P. R. Rayavarapu, N. Sharma, V. K. Peterson, S. Adams, J. Solid State Electrochem. 1807, 2011, 16.

[48]

D. Gill, M. Kumar, P. Basera, S. Bhattacharya, J. Phys. Chem. C 2020, 124, 17485.

[49]

S. R. Yeandel, D. O. Scanlon, P. Goddard, J. Mater. Chem. A 2019, 7, 3953.

[50]

Y. Nikodimos, W. N. Su, H. K. Bezabh, M. C. Tsai, C. C. Yang, B. J. Hwang, Mater. Today Chem. 2022, 24, 100837.

[51]

F. Hussain, J. Zhu, H. Xia, Y. Zhao, W. Xia, J. Phys. Chem. C 2022, 126, 13105.

[52]

J. Fu, S. Yang, J. Hou, L. Azhari, Z. Yao, X. Ma, Y. Liu, P. Vanaphuti, Z. Meng, Z. Yang, Y. Zhong, Y. Wang, J. Power Sources 2023, 556, 232465.

[53]

M. S. Wu, B. Xu, W. W. Luo, B. Z. Sun, C. Y. Ouyang, Electrochim. Acta 2020, 334, 135622.

[54]

D. A. Ziolkowska, W. Arnold, T. Druffel, M. Sunkara, H. Wang, ACS Appl. Mater. Interfaces 2019, 11, 6015.

[55]

Y. Li, W. Arnold, A. Thapa, J. B. Jasinski, G. Sumanasekera, M. Sunkara, T. Druffel, H. Wang, ACS Appl. Mater. Interfaces 2020, 12, 42653.

[56]

R. P. Rao, N. Sharma, V. K. Peterson, S. Adams, Solid State Ion. 2013, 230, 72.

[57]

G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter 1996, 54, 11169.

[58]

P. E. Blöchl, Phys. Rev. B Condens. Matter. 1994, 50, 17953.

[59]

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[60]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[61]

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

[62]

W. G. Hoover, A. J. C. Ladd, B. Moran, Phys. Rev. Lett. 1818, 1982, 48.

[63]

D. J. Evans, J. Chem. Phys. 1983, 78, 3297.

[64]

S. Nosé, J. Chem. Phys. 1984, 81, 511.

[65]

W. G. Hoover, Phys. Rev. A 1985, 31, 1695.

[66]

W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

[67]

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

[68]

D. H. Chung, W. R. Buessem, J. Appl. Phys. 1967, 38, 2535.

[69]

B. Xiao, J. Feng, C. T. Zhou, Y. H. Jiang, R. Zhou, J. Appl. Phys. 2011, 109, 023507.

[70]

R. J. Friauf, J. Appl. Phys. 2004, 33, 494.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/