Highly Integrated Perovskite Solar Cells-Based Photorechargeable System with Excellent Photoelectric Conversion and Energy Storage Ability

Jinxin Bi , Shaoyin Li , Dongtao Liu , Bowei Li , Kai Yang , Ming Xu , Chaopeng Fu , Yunlong Zhao , Wei Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12728

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12728 DOI: 10.1002/eem2.12728
RESEARCH ARTICLE

Highly Integrated Perovskite Solar Cells-Based Photorechargeable System with Excellent Photoelectric Conversion and Energy Storage Ability

Author information +
History +
PDF

Abstract

Perovskite solar cells have emerged as a promising technology for renewable energy generation. However, the successful integration of perovskite solar cells with energy storage devices to establish high-efficiency and long-term stable photorechargeable systems remains a persistent challenge. Issues such as electrical mismatch and restricted integration levels contribute to elevated internal resistance, leading to suboptimal overall efficiency (ηoverall) within photorechargeable systems. Additionally, the compatibility of perovskite solar cells with electrolytes from energy storage devices poses another significant concern regarding their stability. To address these limitations, we demonstrate a highly integrated photorechargeable system that combines perovskite solar cells with a solid-state zinc-ion hybrid capacitor using a streamlined process. Our study employs a novel ultraviolet-cured ionogel electrolyte to prevent moisture-induced degradation of the perovskite layer in integrated photorechargeable system, enabling perovskite solar cells to achieve maximum power conversion efficiencies and facilitating the monolithic design of the system with minimal energy loss. By precisely matching voltages between the two modules and leveraging the superior energy storage efficiency, our integrated photorechargeable system achieves a remarkable ηoverall of 10.01% while maintaining excellent cycling stability. This innovative design and the comprehensive investigations of the dynamic photocharging process in monolithic systems, not only offer a reliable and enduring power source but also provide guidelines for future development of self-power off-grid electronics.

Keywords

ionogel electrolyte / perovskite solar cells / photorechargeable system / self-powered electronics / zinc-ion hybrid capacitor

Cite this article

Download citation ▾
Jinxin Bi, Shaoyin Li, Dongtao Liu, Bowei Li, Kai Yang, Ming Xu, Chaopeng Fu, Yunlong Zhao, Wei Zhang. Highly Integrated Perovskite Solar Cells-Based Photorechargeable System with Excellent Photoelectric Conversion and Energy Storage Ability. Energy & Environmental Materials, 2024, 7(5): e12728 DOI:10.1002/eem2.12728

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Qiu, Y. Shen, B. Li, Y. Zheng, Y. Xia, Y. Chen, W. Huang, Sol. RRL 2019, 3, 1900320.

[2]

A. D. Salunke, S. Chamola, A. Mathieson, B. D. Boruah, M. De Volder, S. Ahmad, ACS Appl. Energy Mater. 2022, 5, 7891.

[3]

L. Fagiolari, M. Sampo, A. Lamberti, J. Amici, C. Francia, S. Bodoardo, F. Bella, Energy Storage Mater. 2022, 5, 400.

[4]

D. Lau, N. Song, C. Hall, Y. Jiang, S. Lim, Z. Ouyang, A. Lennon, Mater. Today Energy 2019, 13, 22.

[5]

H. Xue, H. Gong, Y. Yamauchi, T. Sasaki, R. Ma, Nano Res. Energy 2022, 1, 9120007.

[6]

R. Hidalgo-Leon, J. Urquizo, C. E. Silva, J. Silva-Leon, J. Wu, P. Signh, G. Soriano, Energy Rep. 2022, 8, 3809.

[7]

Aaryashree, S. Sahoo, P. Walke, S. K. Nayak, C. S. Rout, D. J. Late, Nano Res. 2021, 14, 3669.

[8]

A. Pop-Vadean, P. P. Pop, T. Latinovic, C. Barz, C. Lung, IOP Conf. Ser. Mater. Sci. Eng. 2017, 200, 012043.

[9]

X. Zhang, W. Song, J. Tu, J. Wang, M. Wang, S. Jiao, Adv. Sci. 2021, 8, 2100552.

[10]

N. Yan, X. Gao, Energy Environ. Mater. 2022, 5, 439.

[11]

V. Vega-Garita, L. Ramirez-Elizondo, N. Narayan, P. Bauer, Prog. Photovolt. Res. Appl. 2019, 27, 346.

[12]

M. Kim, J. Jeong, H. Z. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H. B. Kim, S. I. Mo, Y. K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel, D. S. Kim, Science 2022, 375, 302.

[13]

Y. Mo, C. Wang, X. Zheng, P. Zhou, J. Li, X. Yu, K. Yang, X. Deng, H. Park, F. Huang, Y. Cheng, Interdiscip. Mater. 2022, 1, 309.

[14]

F. Fu, J. Li, T. Yang, H. Liang, A. Faes, Q. Jeangros, C. Ballif, Y. Hou, Adv. Mater. 2022, 34, 2106540.

[15]

X. He, J. Chen, X. Ren, L. Zhang, Y. Liu, J. Feng, J. Fang, K. Zhao, S. Liu, Adv. Mater. 2021, 33, 2100770.

[16]

B. Li, J. Deng, J. A. Smith, P. Caprioglio, K. Ji, D. Luo, J. D. McGettrick, K. D. G. I. Jayawardena, R. C. Kilbride, A. Ren, S. Hinder, J. Bi, T. Webb, I. Marko, X. Liu, Y. Xiang, J. Reding, H. Li, S. Du, D. G. Lidzey, S. D. Stranks, T. Watson, S. Sweeney, H. J. Snaith, S. R. P. Silva, W. Zhang, Adv. Energy Mater. 2022, 12, 2202868.

[17]

F. Wang, Y. Cao, C. Chen, Q. Chen, X. Wu, X. Li, T. Qin, W. Huang, Adv. Funct. Mater. 2018, 28, 1803753.

[18]

G. Yang, W. Yang, H. Gu, Y. Fu, B. Wang, H. Cai, J. Xia, N. Zhang, C. Liang, G. Xing, S. Yang, Y. Chen, W. Huang, Adv. Mater. 2023, 35, 2300383.

[19]

L. Kin, Z. Liu, O. Astakhov, S. N. Agbo, H. Tempel, S. Yu, H. Kungl, R. A. Eichel, U. Rau, T. Kirchartz, T. Merdzhanova, ACS Appl. Energy Mater. 2020, 3, 431.

[20]

P. Chen, G. Li, T. Li, X. Gao, Adv. Sci. 2019, 6, 1900620.

[21]

C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418.

[22]

Y. Wang, I. Ahmad, T. Leung, J. Lin, W. Chen, F. Liu, A. M. C. Ng, Y. Zhang, A. B. Djurišić, ACS Mater. Au 2022, 2, 215.

[23]

H. Dong, J. Li, J. Guo, F. Lai, F. Zhao, Y. Jiao, D. J. L. Brett, T. Liu, G. He, I. P. Parkin, Adv. Mater. 2021, 33, 2007548.

[24]

K. Wang, H. Li, Z. Xu, H. Wang, M. Ge, Y. Zhang, S. Chen, Y. Tang, Carbon Neutralization 2023, 2, 37.

[25]

J. Zhao, Z. Xu, Z. Zhou, S. Xi, Y. Xia, Q. Zhang, L. Huang, L. Mei, Y. Jiang, J. Gao, Z. Zeng, C. Tan, ACS Nano 2021, 15, 10597.

[26]

J. Bi, J. Zhang, P. Giannakou, T. Wickramanayake, X. Yao, M. Wang, X. Liu, M. Shkunov, W. Zhang, Y. Zhao, Energy Storage Mater. 2022, 51, 239.

[27]

P. Chen, T. Li, Y. Yang, G. Li, X. Gao, Nat. Commun. 2022, 13, 64.

[28]

Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang, Y. Shao, R. B. Kaner, J. Sun, Energy Environ. Sci. 2021, 14, 1602.

[29]

J. Zeng, L. Dong, L. Sun, W. Wang, Y. Zhou, L. Wei, X. Guo, Nano-Micro Lett. 2020, 13, 19.

[30]

X. Deng, L. Xie, S. Wang, C. Li, A. Wang, Y. Yuan, Z. Cao, T. Li, L. Ding, F. Hao, J. Chem. Eng. 2020, 398, 125594.

[31]

J. Zhou, H. Sui, Z. Jia, Z. Yang, L. He, X. Li, RSC Adv. 2018, 8, 32832.

[32]

D. Chan, Y. Liu, Y. Fan, H. Wang, S. Chen, T. Hao, H. Li, Z. Bai, H. Shao, G. Xing, Y. Zhang, Y. Tang, Energy Environ. Mater. 2023, 6, 12451.

[33]

Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao, L. Wang, M. A. Green, Adv. Energy Mater. 2020, 10, 1903930.

[34]

S. H. Kim, K. H. Choi, S. J. Cho, J. Yoo, S. S. Lee, S. Y. Lee, Energy Environ. Sci. 2018, 11, 321.

[35]

J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao, T. J. Macdonald, M. Wang, I. P. Parkin, P. R. Shearing, D. J. L. Brett, G. Chai, G. He, Adv. Energy Mater. 2022, 12, 2201840.

[36]

L. Li, S. Liu, W. Liu, D. Ba, W. Liu, Q. Gui, Y. Chen, Z. Hu, Y. Li, J. Liu, Nano-Micro Lett. 2021, 13, 34.

[37]

R. Chen, M. Yu, R. P. Sahu, I. K. Puri, I. Zhitomirsky, Adv. Energy Mater. 2020, 10, 201903848.

[38]

F. Wu, M. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, X. Wang, C. Wu, Electrochem. Energy Rev. 2021, 4, 382.

[39]

W. Li, J. Zheng, B. Hu, H. Fu, M. Hu, A. Veyssal, Y. Zhao, J. He, T. L. Liu, A. Ho-Baillie, S. Jin, Nat. Mater. 2020, 19, 1326.

[40]

H. Kanda, V. D. Mihailetchi, M. E Gueunier-Farret, J. Kleider, Z. Djebbour, J. Alvarez, B. Philippe, O. Isabella, M. R. Vogt, R. Santbergen, P. Schulz, F. Peter, M. K. Nazeeruddin, J. P. Connolly, Interdiscip. Mater. 2022, 1, 148.

[41]

S. H. Kim, K. H. Choi, S. J. Cho, S. Choi, S. Park, S. Y. Lee, Nano Lett. 2015, 15, 5168.

[42]

K. Lee, Y. Shang, V. A. Bobrin, R. Kuchel, D. Kundu, N. Corrigan, C. Boyer, Adv. Mater. 2022, 34, 2204816.

[43]

Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2022, 34, 2106409.

[44]

W. Kao-ian, A. A. Mohamad, W. Liu, R. Pornprasertsuk, S. Siwamogsatham, S. Kheawhom, Batteries Supercaps 2022, 5, 202100361.

[45]

H. Ge, X. Feng, D. Liu, Y. Zhang, Nano Res. Energy 2022, 2, 9120039.

[46]

L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang, J. A. Zapien, S. Chen, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 1908121.

[47]

W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Adv. Sci. 2021, 8, 2004490.

[48]

Q. Xia, J. Wu, Q. Shi, X. Xiang, X. Li, H. Pei, H. Zeng, X. Xie, Y. Ye, J. Power Sources 2019, 414, 283.

[49]

D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 2020, 5, 44.

[50]

M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. D. Carlo, R. Cheacharoen, Y. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. D. Girolamo, M. Grätzel, A. Hagfeldt, E. V. Hauff, H. Hoppe, M. Lira-Cantu, Nat. Energy 2020, 5, 35.

[51]

S. Prathapani, D. Choudhary, S. Mallick, P. Bhargava, A. Yella, CrystEngComm 2017, 19, 3834.

[52]

L. Zhang, G. Wang, J. Feng, Q. Ma, Z. Liu, X. Yan, ChemElectroChem 2021, 8, 1289.

[53]

X. Fan, P. Liu, B. Ouyang, R. Cai, X. Chen, X. Liu, W. Liu, J. Wang, K. Liu, ChemElectroChem 2021, 8, 3572.

[54]

W. Yan, C. Ma, X. Cai, Y. Sun, G. Zhang, W. Song, Nano Energy 2023, 108, 108203.

[55]

H. Zhang, X. Wu, Y. Pan, A. Azam, Z. Zhang, Energy Convers. Manag. 2021, 247, 114674.

[56]

J. Yang, M. A. Bissett, R. A. W. Dryfe, ChemSusChem 2021, 14, 1700.

[57]

T. Li, Y. Yang, B. Zhao, Y. Wu, X. Wu, P. Chen, X. Gao, J. Chem. Eng. 2022, 29, 140684.

[58]

S. F. Hoefler, R. Zettl, D. Knez, G. Haberfehlner, F. Hofer, T. Rath, G. Trimmel, H. M. R. Wilkening, I. Hanzu, ACS Sustain. Chem. Eng. 2020, 8, 19155.

[59]

C. Li, S. Cong, Z. Tian, Y. Song, L. Yu, C. Lu, Y. Shao, J. Li, G. Zou, M. H. Rümmeli, S. Dou, J. Sun, Z. Liu, Nano Energy 2019, 60, 247.

[60]

J. Xu, Y. Chen, L. Dai, Nat. Commun. 2015, 6, 8103.

[61]

Z. Liu, Y. Zhong, B. Sun, X. Liu, J. Han, T. Shi, Z. Tang, G. Liao, ACS Appl. Mater. Interfaces 2017, 9, 22361.

[62]

J. Shin, V. H. Tran, D. C. T. Nguyen, S. K. Kim, S. H. Lee, Org. Electron. 2021, 89, 106050.

[63]

J. Liang, G. Zhu, C. Wang, P. Zhao, Y. Wang, Y. Hu, L. Ma, Z. Tie, J. Liu, Z. Jin, Nano Energy 2018, 52, 239.

[64]

L. C. Kin, Z. Liu, O. Astakhov, S. Shcherbachenko, H. Kungl, T. Kirchartz, R.-A. Eichel, U. Rau, T. Merdzhanova, Cell Rep. Phys. Sci. 2022, 3, 101123.

[65]

Y. Hu, Y. Bai, B. Luo, S. Wang, H. Hu, P. Chen, M. Lyu, J. Shapter, A. Rowan, L. Wang, Adv. Energy Mater. 2019, 9, 1900872.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/