Optimizing Electrocatalytic Hydrogen Evolution Stability via Minimal Bubble Adhesion at Electrodeposited Crack-Structured NiPx Catalysts

Qian Sun , Xiaoyu Hao , Dina Zhang , Tianyi Zhang , Yuanfang Zhao , Xiaolei Huang , Xuqing Liu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12726

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12726 DOI: 10.1002/eem2.12726
RESEARCH ARTICLE

Optimizing Electrocatalytic Hydrogen Evolution Stability via Minimal Bubble Adhesion at Electrodeposited Crack-Structured NiPx Catalysts

Author information +
History +
PDF

Abstract

In response to the ongoing energy crisis, advancing the field of electrocatalytic water splitting is of utmost significance, necessitating the urgent development of high-performance, cost-effective, and durable hydrogen evolution reaction catalysts. But the generated gas bubble adherence to the electrode surface and sluggish separation contribute to significant energy loss, primarily due to the insufficient exposure of active sites, thus substantially hindering electrochemical performance. Here, we successfully developed a superaerophobic catalytic electrode by loading phosphorus-doped nickel metal (NiPx) onto various conductive substrates via an electrodeposition method. The electrode exhibits a unique surface structure, characterized by prominent surface fissures, which not only exposes additional active sites but also endows the electrode with superaerophobic properties. The NiPx/Ti electrode demonstrates superior electrocatalytic activity for hydrogen evolution reaction, significantly outperforming a platinum plate, displaying an overpotential of mere 216 mV to achieve a current density of -500 mA cm-2 in 1 M KOH. Furthermore, the NiPx/Ti electrode manifests outstanding durability and robustness during continuous electrolysis, maintaining stability at a current density of -10 mA cm-2 over a duration of 2000 h. Owing to the straightforward and scalable preparation methods, this highly efficient and stable NiPx/Ti electrocatalyst offers a novel strategy for the development of industrial water electrolysis.

Keywords

electrocatalyst / gas bubble adhesion / hydrogen evolution reaction / long-term durability / superaerophobic surface

Cite this article

Download citation ▾
Qian Sun, Xiaoyu Hao, Dina Zhang, Tianyi Zhang, Yuanfang Zhao, Xiaolei Huang, Xuqing Liu. Optimizing Electrocatalytic Hydrogen Evolution Stability via Minimal Bubble Adhesion at Electrodeposited Crack-Structured NiPx Catalysts. Energy & Environmental Materials, 2024, 7(5): e12726 DOI:10.1002/eem2.12726

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. S. Dresselhaus, I. Thomas, Nature 2001, 414, 332.

[2]

M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, Science 2002, 298, 981.

[3]

C.-T. Dinh, A. Jain, F. P. G. de Arquer, P. De Luna, J. Li, N. Wang, X. Zheng, J. Cai, B. Z. Gregory, O. Voznyy, Nat. Energy 2019, 4, 107.

[4]

Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Angew. Chem. Int. Ed. 2020, 59, 1718.

[5]

M. Wang, L. Zhang, M. Huang, Y. Liu, Y. Zhong, J. Pan, Y. Wang, H. Zhu, Energy Environ. Mater. 2020, 3, 12.

[6]

Y. Xu, X. Jiang, G. Shao, H. Xiang, S. Si, X. Li, T. S. Hu, G. Hong, S. Dong, H. Li, Energy Environ. Mater. 2021, 4, 117.

[7]

X. Cao, T. Wang, L. Jiao, Adv. Fiber Mater. 2021, 3, 210.

[8]

L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023.

[9]

W. Zhai, Y. Ma, D. Chen, J. C. Ho, Z. Dai, Y. Qu, InfoMat 2022, 4, e12357.

[10]

K. Xue, Y. Mo, B. Long, W. Wei, C. Shan, S. Guo, L. Niu, InfoMat 2022, 4, e12296.

[11]

H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326.

[12]

D. Li, L. Liao, H. Zhou, Y. Zhao, F. Cai, J. Zeng, F. Liu, H. Wu, D. Tang, F. Yu, Mat. Today Phys. 2021, 16, 100314.

[13]

L. Lin, Z. Sun, M. Yuan, J. He, R. Long, H. Li, C. Nan, G. Sun, S. Ma, J. Mater. Chem. A 2018, 6, 8068.

[14]

P. Li, X. Duan, S. Wang, L. Zheng, Y. Li, H. Duan, Y. Kuang, X. Sun, Small 2019, 15, 1904043.

[15]

G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Adv. Mater. 2018, 30, 1706279.

[16]

Y. Du, Z. Li, Y. Liu, Y. Yang, L. Wang, Appl. Surf. Sci. 2018, 457, 1081.

[17]

F. Shi, W. Gao, H. Shan, F. Li, Y. Xiong, J. Peng, Q. Xiang, W. Chen, P. Tao, C. Song, Chem 2020, 6, 2257.

[18]

Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, Nat. Energy 2016,

[19]

S. K. Mazloomi, N. Sulaiman, Renew. Sust. Energ. Rev. 2012, 16, 4257.

[20]

Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.

[21]

B. Seo, G. Y. Jung, Y. J. Sa, H. Y. Jeong, J. Y. Cheon, J. H. Lee, H. Y. Kim, J. C. Kim, H. S. Shin, S. K. Kwak, ACS Nano 2015, 9, 3728.

[22]

Q. Yu, Z. Zhang, S. Qiu, Y. Luo, Z. Liu, F. Yang, H. Liu, S. Ge, X. Zou, B. Ding, Nat. Commun. 2021, 12, 6051.

[23]

X. Yu, Z.-Y. Yu, X.-L. Zhang, Y.-R. Zheng, Y. Duan, Q. Gao, R. Wu, B. Sun, M.-R. Gao, G. Wang, J. Am. Chem. Soc. 2019, 141, 7537.

[24]

M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 2014, 136, 10053.

[25]

G. Feng, Y. Kuang, Y. Li, X. Sun, Nano Res. 2015, 8, 3365.

[26]

J. Hao, W. Yang, Z. Huang, C. Zhang, Adv. Mater. Inter. 2016, 3, 1600236.

[27]

C.-C. Wang, C.-Y. Chen, Electrochim. Acta 2009, 54, 3877.

[28]

K. M. Cho, P. Deshmukh, W. G. Shin, Ultrason. Sonochem. 2021, 80, 105796.

[29]

M. Wang, Z. Wang, Z. Guo, Int. J. Hydrog. Energy 2010, 35, 3198.

[30]

M. Wang, Z. Wang, Z. Guo, Int. J. Hydrog. Energy 2009, 34, 5311.

[31]

Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang, X. Du, J. Mater. Chem. A 2018, 6, 5098.

[32]

Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Adv. Funct. Mater. 2015, 25, 1737.

[33]

Y. Yang, J. Li, Y. Yang, L. Lan, R. Liu, Q. Fu, L. Zhang, Q. Liao, X. Zhu, Appl. Energy 2022, 307, 118278.

[34]

H. Xu, X. Niu, Z. Liu, M. Sun, Z. Liu, Z. Tian, X. Wu, B. Huang, Y. Tang, C. H. Yan, Small 2021, 17, 2103064.

[35]

Y. Wu, Y. Gao, H. He, P. Zhang, Appl. Surf. Sci. 2019, 480, 689.

[36]

X. Liu, X. Wang, X. Yuan, W. Dong, F. Huang, J. Mater. Chem. A 2016, 4, 167.

[37]

Z. Sun, X. Wang, M. Yuan, H. Yang, Y. Su, K. Shi, C. Nan, H. Li, G. Sun, J. Zhu, ACS Appl. Mater. Inter. 2020, 12, 23896.

[38]

D. Guo, D. Duan, J. Gao, X. Zhou, S. Liu, Y. Wang, Int. J. Hydrog. Energy 2022, 47, 6620.

[39]

T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A. M. Asiri, Electrochem. Commun. 2015, 60, 92.

[40]

B. You, N. Jiang, M. Sheng, M. W. Bhushan, Y. Sun, ACS Catal. 2016, 6, 714.

[41]

H. Ashassi-Sorkhabi, P. La’le Badakhshan, E. Asghari, Chem. Eng. J. 2016, 299, 282.

[42]

S. Tamilarasi, R. S. Kumar, K.-B. Cho, C.-J. Kim, D. J. Yoo, Mater. Today Chem. 2023, 34, 101765.

[43]

Y. Zhou, C. Liu, X. Li, L. Sun, D. Wu, J. Li, P. Huo, H. Wang, J. Alloys Compd. 2019, 790, 36.

[44]

D. A. Brewster, Y. Bian, K. E. Knowles, Chem. Mater. 2020, 32, 2004.

[45]

Y. Huang, M. Liu, J. Wang, J. Zhou, L. Wang, Y. Song, L. Jiang, Adv. Funct. Mater. 2011, 21, 4436.

[46]

J. He, B. Hu, Y. Zhao, Adv. Funct. Mater. 2016, 26, 5998.

[47]

O. Agboola, R. E. Sadiku, O. F. Biotidara, Int. J. Phys. Sci. 2012, 7, 349.

[48]

X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater. 2020, 32, 2003414.

[49]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[50]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/