Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co5.47N/CoN Heterojunctions

Sirui Liu , Qiong Gao , Bo Geng , Lili Wu , Zhikun Xu , Xinzhi Ma , Shijie Liu , Boquan Li , Mingyi Zhang , Lirong Zhang , Xitian Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12724

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12724 DOI: 10.1002/eem2.12724
RESEARCH ARTICLE

Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co5.47N/CoN Heterojunctions

Author information +
History +
PDF

Abstract

Solar irradiation can efficiently promote the kinetics of the oxygen evolution reaction (OER) during water splitting, where heterojunction catalysts exhibit excellent photoresponsive properties. However, insights into the origins of photoassisted OER catalysis remain unclear, especially the interfaced promotion under convergent solar irradiation (CSI). Herein, novel allotropic Co5.47N/CoN heterojunctions were synthesized, and corresponding OER mechanisms under CSI were comprehensively uncovered from physical and chemical aspects using the in situ Raman technique and electrochemical cyclic voltammetry method. Our results provide a unique mechanism where high-energy UV light promotes the Co3+/4+ conversion process in addition to the ordinary photoelectric effect excitation of the Co2+ material. Importantly, visible light under CSI can produce a photothermal effect for Co2+ excitation and Co3+/4+ conversion, which promotes the OER significantly more than the usual photoelectric effect. As a result, Co5.47N/CoN (containing 28% CoN) obtained 317.9% OER enhancement, which provides a pathway for constructing excellent OER catalysts.

Keywords

chemical origins / in situ Raman / OER / photothermal effect / physical origins

Cite this article

Download citation ▾
Sirui Liu, Qiong Gao, Bo Geng, Lili Wu, Zhikun Xu, Xinzhi Ma, Shijie Liu, Boquan Li, Mingyi Zhang, Lirong Zhang, Xitian Zhang. Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co5.47N/CoN Heterojunctions. Energy & Environmental Materials, 2024, 7(5): e12724 DOI:10.1002/eem2.12724

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.

[2]

S. Lyu, C. Guo, J. Wang, Z. Li, B. Yang, L. Lei, L. Wang, J. Xiao, T. Zhang, Y. Hou, Nat. Commun. 2022, 13, 6171.

[3]

J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215.

[4]

Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.

[5]

T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.

[6]

X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, ACS Catal. 2017, 7, 6464.

[7]

H. Meng, W. Xi, Z. Ren, S. Du, J. Wu, L. Zhao, B. Liu, H. Fu, Appl. Catal. B Environ. 2021, 284, 119707.

[8]

B. He, S. Jia, M. Zhao, Y. Wang, T. Chen, S. Zhao, Z. Li, Z. Lin, Y. Zhao, X. Liu, Adv. Mater. 2021, 33, 2004406.

[9]

A. S. M Ismail, I. Garcia-Torregrosa, J. C. Vollenbroek, L. Folkertsma, J. G. Bomer, T. Haarman, M. Ghiasi, M. Schellhorn, M. Nachtegaal, M. Odijk, A. van den Berg, B. M. Weckhuysen, F. M. F. de Groot, ACS Catal. 2021, 11, 12324.

[10]

B. Jin, Y. Li, J. Wang, F. Meng, S. Cao, B. He, S. Jia, Y. Wang, Z. Li, X. Liu, Small 2019, 15, 1903847.

[11]

Y. Geng, Y. Zhao, J. Zhao, Y. Zhai, M. Yuan, X.-D. Wang, H. Gao, J. Feng, Y. Wu, L. Jiang, SmartMat 2021, 2, 388.

[12]

G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 2016, 138, 9128.

[13]

Y. Zhang, Y. Wang, H. Jiang, M. Huang, Small 2020, 16, 2002550.

[14]

T. Lu, T. Li, D. Shi, J. Sun, H. Pang, L. Xu, J. Yang, Y. Tang, SmartMat 2021, 2, 388.

[15]

P. Zhang, W. Wang, H. Wang, Y. Li, C. Cui, ACS Catal. 2020, 10, 10427.

[16]

L. Gan, J. Lai, Z. Liu, J. Luo, S. Zhang, Q. Zhang, J. Alloys Compd. 2022, 905, 164200.

[17]

P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 14710.

[18]

K. Oda, T. Yoshio, K. Oda, Mater. Sci. 1987, 22, 2729.

[19]

H. Jiang, X. Li, S. Zang, W. Zhang, J. Alloys Compd. 2021, 854, 155328.

[20]

Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu, C. Li, Appl. Catal. B Environ. 2019, 256, 117893.

[21]

H. Liu, X. Lu, Y. Hu, R. Chen, P. Zhao, L. Wang, G. Zhu, L. Ma, Z. Jin, J. Mater. Chem. A 2019, 7, 12489.

[22]

H. Qi, Y. Feng, Z. Chi, Y. Cui, M. Wang, J. Liu, Z. Guo, L. Wang, S. Feng, Nanoscale 2019, 11, 21943.

[23]

F. Wang, H. Zhao, Y. Ma, Y. Yang, B. Li, Y. Cui, Z. Guo, L. Wang, J. Energy Chem. 2020, 50, 52.

[24]

D. Li, W. Zhang, J. Zeng, B. Gao, Y. Tang, Q. Gao, Sci. China Mater. 1889, 2021, 64.

[25]

T. Wang, X. Cao, H. Qin, X. Chen, J. Li, L. Jiao, J. Mater. Chem. A 2021, 9, 21094.

[26]

X. Chen, Q. Zhang, L. Wu, L. Shen, H. Fu, J. Luo, X. Li, J. Lei, H. Luo, N. B. Li, Mater. Today Phys. 2020, 15, 100268.

[27]

S.-H. Cho, K. Yoon, K. Shin, J.-W. Jung, C. Kim, J. Cheong, D.-Y. Youn, S. Song, G. Henkelman, I.-D. Kim, Chem. Mater. 2018, 30, 5941.

[28]

X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, X. Zhuang, S. Yang, L. He, H. Liu, D. Sheng, Adv. Mater. 2017, 29, 1704091.

[29]

K. Yoon, C.-K. Hwang, S.-H. Kim, J.-W. Jung, J. Chae, J. Kim, K. Lee, A. Lim, S.-H. Cho, J. P. Singh, J. M. Kim, K. Shin, B. M. Moon, H. S. Park, H.-J. Kim, K. H. Chae, H. C. Ham, I.-D. Kim, J. Y. Kim, ACS Nano 2021, 15, 11218.

[30]

R.-Q. Li, P. Hu, M. Miao, Y. Li, X.-F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, X.-B. Wang, J. Mater. Chem. A 2018, 6, 24767.

[31]

H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 2020, 30, 1910596.

[32]

Z. Cui, X. Liang, P. Wang, P. Zhou, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, B. Huang, Electrochim. Acta 2021, 395, 139128.

[33]

T. Liu, S. Zhao, Y. Wang, J. Yu, Y. Dai, J. Wang, X. Sun, K. Liu, M. Ni, Small 2022, 18, 2105887.

[34]

N. Wang, B. Hao, H. Chen, R. Zheng, B. Chen, S. Kuang, X. Chen, L. Cui, Chem. Eng. J. 2021, 413, 127954.

[35]

I. Kone, Z. Ahmad, A. Xie, Y. Tang, Y. Sun, Y. Chen, X. Yang, P. Wan, Energ. Technol. 2020, 8, 2000409.

[36]

W. Yuan, S. Wang, Y. Ma, Y. Qiu, Y. An, L. Cheng, ACS Energy Lett. 2020, 5, 692.

[37]

H. Ge, G. Li, J. Shen, W. Ma, X. Meng, L. Xu, Appl. Catal. B Environ. 2020, 275, 119104.

[38]

F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.

[39]

Y. Wu, Y. Li, M. Yuan, H. Hao, X. San, Z. Lv, L. Xu, B. Wei, Chem. Eng. J. 2022, 427, 131944.

[40]

L. Gao, X. Cui, Z. Wang, Z. Lin, Proc. Natl Acad. Sci. USA 2020, 118, e202421118.

[41]

Y. Li, Y. Wu, H. Hao, M. Yuan, Z. Lv, L. Xu, B. Wei, Appl. Catal. B Environ. 2022, 305, 121033.

[42]

D. Xu, J. Yao, X. Ma, Y. Xiao, C. Zhang, W. Lin, H. Gao, J. Colloid. Interf. Sci. 2022, 619, 298.

[43]

L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed. 2016, 55, 5277.

[44]

X. Ma, K. Zhao, Y. Sun, Y. Wang, F. Yan, X. Zhang, Y. Chen, Catal. Sci. Technol. 2020, 10, 2165.

[45]

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.

[46]

M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329.

[47]

K. Hara, T.-A. Yano, K. Suzuki, M. Hirayama, T. Hayashi, R. Kanno, M. Hara, Anal. Sci. 2017, 33, 853.

[48]

R. L. Ciceo, M. Todeab, R. Dudric, A. Buhai, V. Simon, J. Non-Cryst. Solids 2018, 481, 562.

[49]

M. A. Camacho-López, S. Vargas, R. Arroyo, E. Haro-Poniatowski, R. Rodríguez, Opt. Mater. 2002, 20, 43.

[50]

J. C. Christie, I. W. Johnstone, G. D. Jones, K. Zdansky, Phys. Rev. B 1975, 12, 4656.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/