Low-Strain and High-Energy KVPO4F Cathode with Multifunctional Stabilizer for Advanced Potassium-Ion Batteries

Yongli Heng , Zhenyi Gu , Jinzhi Guo , Haojie Liang , Yan Liu , Wei Guo , Xinxin Zhao , Xiaotong Wang , Xinglong Wu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12721

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12721 DOI: 10.1002/eem2.12721
RESEARCH ARTICLE

Low-Strain and High-Energy KVPO4F Cathode with Multifunctional Stabilizer for Advanced Potassium-Ion Batteries

Author information +
History +
PDF

Abstract

KVPO4F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries (PIBs), but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability. Here, a high-energy and low-strain KVPO4F composite cathode assisted by multifunctional K2C4O4 electrode stabilizer is exquisitely designed. Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg-1 with 142.7 mAh g-1 of reversible capacity at 25 mA g-1, outstanding rate capability of 70.6 mAh g-1 at 1000 mA g-1, and decent cycling stability. Furthermore, slight volume change (∼5%) and increased interfacial stability with thin and even cathode–electrolyte interphase can be observed through in situ and ex situ characterizations, which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K2C4O4 additive. Moreover, potassium-ion full cells manifest significant improvement in energy density and cycling stability. This work demonstrates a positive impact of K2C4O4 additive on the comprehensive electrochemical enhancement, especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.

Keywords

high energy density / K 2C 4O 4 / KVPO 4F composite cathode / low strain / potassium-ion batteries

Cite this article

Download citation ▾
Yongli Heng, Zhenyi Gu, Jinzhi Guo, Haojie Liang, Yan Liu, Wei Guo, Xinxin Zhao, Xiaotong Wang, Xinglong Wu. Low-Strain and High-Energy KVPO4F Cathode with Multifunctional Stabilizer for Advanced Potassium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12721 DOI:10.1002/eem2.12721

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, Nano-Micro Lett. 2022, 14, 94.

[2]

H. Lu, R. Hou, S. Chu, H. Zhou, S. Guo, Acta Phys. Chim. Sin. 2023, 39, 2211057.

[3]

Y. T. Xu, S. J. Dai, X. F. Wang, X. W. Wu, Y. G. Guo, X. X. Zeng, InfoMat 2023,

[4]

K.-D. Du, Y.-F. Meng, X.-X. Zhao, X.-T. Wang, X.-X. Luo, W. Zhang, X.-L. Wu, Sci. China Mater. 2022, 65, 637.

[5]

M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 2023, 34, 107706.

[6]

Y. Huang, J. Li, Adv. Energy Mater. 2022, 12, 2202197.

[7]

M. Guo, W. Tang, Y. Hong, B. Wei, J. Hu, F. Yu, C. Fan, Sci. China Mater. 2023, 66, 2621.

[8]

J. Wang, Y. Yuan, X. Rao, M. Yang, D. Wang, A. Zhang, Y. Chen, Z. Li, H. Zhao, Int. J. Miner. Metall. Mater. 2023, 30, 1859.

[9]

Y. He, F. Han, F. Wang, J. Tao, H. Wu, F. Zhang, J. Liu, Electrochim. Acta 2021, 373, 137924.

[10]

X. Ma, H. Fu, J. Shen, D. Zhang, J. Zhou, C. Tong, A. M. Rao, J. Zhou, L. Fan, B. Lu, Angew. Chem. Int. Ed. 2023, 62, e202312973.

[11]

P. N. Le Pham, R. Wernert, M. Cahu, M. T. Sougrati, G. Aquilanti, P. Johansson, L. Monconduit, L. Stievano, J. Mater. Chem. A 2023, 11, 3091.

[12]

R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Adv. Funct. Mater. 2020, 30, 1909486.

[13]

J. Zheng, C. Hu, L. Nie, H. Chen, S. Zang, M. Ma, Q. Lai, Adv. Mater. Technol. 2023, 8, 2201591.

[14]

S. S. Fedotov, A. S. Samarin, E. V. Antipov, J. Power Sources 2020, 480, 228840.

[15]

H. Kim, D.-H. Seo, M. Bianchini, R. J. Clément, H. Kim, J. C. Kim, Y. Tian, T. Shi, W.-S. Yoon, G. Ceder, Adv. Energy Mater. 2018, 8, 1801591.

[16]

Z. Liu, J. Wang, B. Lu, Sci. Bull. 2020, 65, 1242.

[17]

C. Xie, X. Liu, J. Han, L. Lv, X. Zhou, C. Han, Y. You, Small 2022, 18, 2204348.

[18]

H. He, K. Cao, S. Zeng, J. Si, Y. Zhu, C.-H. Chen, J. Power Sources 2023, 587, 233715.

[19]

H. Kim, J. C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Adv. Energy Mater. 2018, 8, 1702384.

[20]

H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Nat. Commun. 2023, 14, 2305.

[21]

Z.-Z. Yu, G.-Q. Zhao, F.-L. Ji, H. Tong, Q.-L. Tong, H.-C. Li, Y. Cheng, Rare Met. 2023, 42, 4103.

[22]

Z. Caixiang, J. Hao, J. Zhou, X. Yu, B. Lu, Adv. Energy Mater. 2023, 13, 2203126.

[23]

S. Li, L. Wu, H. Fu, A. Rao, L. Cha, J. Zhou, B. Lu, Small Methods 2023, 7, 2300893.

[24]

T. Zhong, H. Zhang, M. Song, Y. Jiang, D. Shang, F. Wu, L. Zhang, Int. J. Miner. Metall. Mater. 2023, 30, 2270.

[25]

A. Li, Y. Man, J. Liao, L. Duan, X. Ji, X. Zhou, Nano Lett. 2023, 23, 10066.

[26]

M. Xiang, W. Fan, W. Lin, S. Zhou, F. Li, Z. Yang, S. Dong, Carbon Neutralization 2023, 2, 616.

[27]

K. Zhang, Y. Xu, Y. Lin, Y. Xiong, J. Huang, L. Wang, M. Peng, T. Hu, K. Yuan, Y. Chen, Chin. Chem. Lett. 2021, 32, 3553.

[28]

J. Liao, C. Chen, Q. Hu, Y. Du, Y. He, Y. Xu, Z. Zhang, X. Zhou, Angew. Chem. Int. Ed. 2021, 60, 25575.

[29]

M. Arnaiz, D. Shanmukaraj, D. Carriazo, D. Bhattacharjya, A. Villaverde, M. Armand, J. Ajuria, Energy Environ. Sci. 2020, 13, 2441.

[30]

J. Martínez De Ilarduya, L. Otaegui, M. Galcerán, L. Acebo, D. Shanmukaraj, T. Rojo, M. Armand, Electrochim. Acta 2019, 321, 134693.

[31]

Y.-B. Niu, Y.-J. Guo, Y.-X. Yin, S.-Y. Zhang, T. Wang, P. Wang, S. Xin, Y.-G. Guo, Adv. Mater. 2020, 32, 2001419.

[32]

B. Shen, B. Sarkodie, L. Zhang, H. Jiang, C. Li, Y. Hu, Energy Storage Mater. 2022, 45, 687.

[33]

X. Pan, A. Chojnacka, F. Béguin, Energy Storage Mater. 2021, 40, 22.

[34]

X. Shen, J. Zhao, Y. Li, X. Sun, C. Yang, H. Liu, Y.-S. Hu, ACS Appl. Energy Mater. 2019, 2, 7474.

[35]

K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, Y. Tang, Angew. Chem. Int. Ed. 2021, 60, 6326.

[36]

J. Xu, J. Liao, Y. Xu, J. Li, C. Zhu, J. Lin, X. Zhou, J. Energy Chem. 2022, 68, 284.

[37]

X.-D. He, L.-M. Zhang, C.-H. Jiang, C.-H. Chen, Chem. Eng. J. 2022, 433, 134634.

[38]

J. Zhao, Y. Qin, L. Li, H. Wu, X. Jia, X. Zhu, H. Zhao, Y. Su, S. Ding, Sci. Bull. 2023, 68, 593.

[39]

X. Shen, Q. Zhou, M. Han, X. Qi, B. Li, Q. Zhang, J. Zhao, C. Yang, H. Liu, Y.-S. Hu, Nat. Commun. 2021, 12, 2848.

[40]

M. Chen, Q. Liu, Y. Zhang, G. Xing, S.-L. Chou, Y. Tang, J. Mater. Chem. A 2020, 8, 16061.

[41]

K. Chihara, A. Katogi, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 5208.

[42]

J. Dong, J. Liao, X. He, Q. Hu, Y. Yu, C. Chen, Chem. Commun. 2020, 56, 10050.

[43]

S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov, E. V. Antipov, Nat. Commun. 2020, 11, 1484.

[44]

J. Han, G. N. Li, F. Liu, M. Wang, Y. Zhang, L. Hu, C. Dai, M. Xu, Chem. Commun. 2017, 53, 1805.

[45]

Y. Meng, C. Nie, W. Guo, D. Liu, Y. Chen, Z. Ju, Q. Zhuang, Energy 2022, 25, 100982.

[46]

W. B. Park, S. C. Han, C. Park, S. U. Hong, U. Han, S. P. Singh, Y. H. Jung, D. Ahn, K. S. Sohn, M. Pyo, Adv. Energy Mater. 2018, 8, 1703099.

[47]

J.-Z. Xiong, Z.-C. Yang, X.-L. Guo, X.-Y. Wang, C. Geng, Z.-F. Sun, A.-Y. Xiao, Q.-C. Zhuang, Y.-X. Chen, Z.-C. Ju, Tungsten 2022,

[48]

W. Zhang, J. Yin, W. Wang, Z. Bayhan, H. N. Alshareef, Nano Energy 2021, 83, 105792.

[49]

Z.-Y. Gu, J.-Z. Guo, X.-X. Zhao, X.-T. Wang, D. Xie, Z.-H. Sun, C.-D. Zhao, H.-J. Liang, W.-H. Li, X.-L. Wu, InfoMat 2021, 3, 694.

[50]

J. Liao, X. Zhang, Q. Zhang, Q. Hu, Y. Li, Y. Du, J. Xu, L. Gu, X. Zhou, Nano Lett. 2022, 22, 4933.

[51]

B. Ji, W. Yao, Y. Zheng, P. Kidkhunthod, X. Zhou, S. Tunmee, S. Sattayaporn, H.-M. Cheng, H. He, Y. Tang, Nat. Commun. 2020, 11, 1225.

[52]

X. Lin, J. Huang, H. Tan, J. Huang, B. Zhang, Energy Storage Mater. 2019, 16, 97.

[53]

B. Tian, W. Tang, C. Su, Y. Li, ACS Appl. Mater. Interfaces 2017, 10, 642.

[54]

L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269.

[55]

C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang, Y. Lei, Adv. Funct. Mater. 2017, 27, 1604307.

[56]

Y. Zhang, X. Niu, L. Tan, L. Deng, S. Jin, L. Zeng, H. Xu, Y. Zhu, ACS Appl. Mater. Interfaces 2020, 12, 9332.

[57]

H.-J. Liang, Z.-Y. Gu, X.-Y. Zheng, W.-H. Li, L.-Y. Zhu, Z.-H. Sun, Y.-F. Meng, H.-Y. Yu, X.-K. Hou, X.-L. Wu, J. Energy Chem. 2021, 59, 589.

[58]

Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, X.-T. Wang, H.-J. Liang, B. Zhao, W.-H. Li, X.-M. Pan, X.-L. Wu, Small 2021, 17, 2102010.

[59]

S. Chong, J. Yang, L. Sun, S. Guo, Y. Liu, H. K. Liu, ACS Nano 2020, 14, 9807.

[60]

L. Fan, R. Ma, J. Wang, H. Yang, B. Lu, Adv. Mater. 2018, 30, 1805486.

[61]

X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu, L. Mai, Nano Lett. 2017, 17, 544.

[62]

L. Zhang, B. Zhang, C. Wang, Y. Dou, Q. Zhang, Y. Liu, H. Gao, M. Al-Mamun, W. K. Pang, Z. Guo, S. X. Dou, H. K. Liu, Nano Energy 2019, 60, 432.

[63]

J. L. Delarbre, L. Maury, L. Bardet, J. Raman Spectrosc. 1986, 17, 373.

[64]

S. Zhao, Z. Liu, G. Xie, Z. Guo, S. Wang, J. Zhou, X. Xie, B. Sun, S. Guo, G. Wang, Energy Environ. Sci. 2022, 15, 3015.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/