Synergistic Coupling of Sulfide Electrolyte and Integrated 3D FeS2 Electrode Toward Long-Cycling All-Solid-State Lithium Batteries

Wenyi Liu , Yongzhi Zhao , Chengjun Yi , Weifei Hu , Jiale Xia , Yuanyuan Li , Jinping Liu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12719

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) :e12719 DOI: 10.1002/eem2.12719
RESEARCH ARTICLE

Synergistic Coupling of Sulfide Electrolyte and Integrated 3D FeS2 Electrode Toward Long-Cycling All-Solid-State Lithium Batteries

Author information +
History +
PDF

Abstract

FeS2 cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity, low cost, and environmental friendliness. However, the poor performances, induced by limited electrode-electrolyte interface, severe volume expansion, and polysulfide shuttle, hinder the application of FeS2 in all-solid-state lithium batteries. Herein, an integrated 3D FeS2 electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges. Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes, but also effectively buffers the inner volume change of FeS2 and completely eliminates the polysulfide shuttle through direct solid–solid conversion of Li2S/S. Besides, the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths, endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics. Benefiting from these synergies, the integrated all-solid-state lithium battery exhibits the largest reversible capacity (667 mAh g-1), best rate performance, and highest capacity retention of 82% over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery. The cycling performance is among the best reported for FeS2-based all-solid-state lithium batteries. This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries, which can be readily applied to other battery systems, such as lithium-sulfur batteries.

Keywords

3D electrolyte infiltration / all-solid-state batteries / FeS 2 nanosheets arrays / integrated 3D electrodes / sulfide electrolytes

Cite this article

Download citation ▾
Wenyi Liu, Yongzhi Zhao, Chengjun Yi, Weifei Hu, Jiale Xia, Yuanyuan Li, Jinping Liu. Synergistic Coupling of Sulfide Electrolyte and Integrated 3D FeS2 Electrode Toward Long-Cycling All-Solid-State Lithium Batteries. Energy & Environmental Materials, 2024, 7(5): e12719 DOI:10.1002/eem2.12719

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M. N. Garaga, B. H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y. Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Nature 2021, 598, 590.

[2]

Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.

[3]

G. Wang, Y. Liang, H. Liu, C. Wang, D. Li, L. Z. Fan, Interdiscip. Mater. 2022, 1, 434.

[4]

S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye, Y. Li, J. Liu, Adv. Mater. 2023, 35, e2110423.

[5]

M. Yang, Y. Yao, M. Chang, F. Tian, W. Xie, X. Zhao, Y. Yu, X. Yao, Adv. Energy Mater. 2023, 13, 2300962.

[6]

Q. Zhang, Z. Ding, G. Liu, H. Wan, J. P. Mwizerwa, J. Wu, X. Yao, Energy Stor. Mater. 2019, 23, 168.

[7]

A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017,

[8]

Z. J. He, L. Z. Fan, Rare Metals 2018, 37, 488.

[9]

L. Wang, Z. Wu, J. Zou, P. Gao, X. Niu, H. Li, L. Chen, Joule 2019, 3, 2086.

[10]

P. Lu, Y. Xia, Y. Huang, Z. Li, Y. Wu, X. Wang, G. Sun, S. Shi, Z. Sha, L. Chen, H. Li, F. Wu, Adv. Funct. Mater. 2022, 33, 2211211.

[11]

J. Jiang, J. Liu, Interdiscip. Mater. 2022, 1, 116.

[12]

Z. Wu, W. Zhang, Y. Xia, H. Huang, Y. Gan, X. He, X. Xia, J. Zhang, EcoMat 2023, 5, e12327.

[13]

T. A. Yersak, H. A. Macpherson, S. C. Kim, V.-D. Le, C. S. Kang, S. B. Son, Y. H. Kim, J. E. Trevey, K. H. Oh, C. Stoldt, S. H. Lee, Adv. Energy Mater. 2013, 3, 120.

[14]

Y. X. Song, Y. Shi, J. Wan, S. Y. Lang, X. C. Hu, H. J. Yan, B. Liu, Y. G. Guo, R. Wen, L. J. Wan, Energy Environ. Sci. 2019, 12, 2496.

[15]

Y. Liu, H. Liu, Y. Lin, Y. Zhao, H. Yuan, Y. Su, J. Zhang, S. Ren, H. Fan, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2104863.

[16]

X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H. W. Lee, Y. Cui, Nano Lett. 2017, 17, 2967.

[17]

H. Wan, G. Liu, Y. Li, W. Weng, J. P. Mwizerwa, Z. Tian, L. Chen, X. Yao, ACS Nano 2019, 13, 9551.

[18]

K. Takada, K. Iwamoto, S. Kondo, Solid State Ionics 1999, 117, 273.

[19]

R. Wang, Z. Wu, C. Yu, C. Wei, L. Peng, L. Wang, S. Cheng, J. Xie, Front. Energy Res. 2023, 10, 1108789.

[20]

J. P. Mwizerwa, Q. Zhang, F. Han, H. Wan, L. Cai, C. Wang, X. Yao, ACS Appl. Mater. Interfaces 2020, 12, 18519.

[21]

J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang, D. Zhou, H. Wan, X. Xu, X. Yao, Electrochem. Energy Rev. 2020, 4, 101.

[22]

F. Wu, W. Fitzhugh, L. Ye, J. Ning, X. Li, Nat. Commun. 2018, 9, 4037.

[23]

H. Xu, G. Cao, Y. Shen, Y. Yu, J. Hu, Z. Wang, G. Shao, Energy Environ. Mater. 2022, 5, 852.

[24]

G. F. Dewald, Z. Liaqat, M. A. Lange, W. Tremel, W. G. Zeier, Angew. Chem. Int. Ed. Engl. 2021, 60, 17952.

[25]

L. Li, W. Liu, H. Dong, Q. Gui, Z. Hu, Y. Li, J. Liu, Adv. Mater. 2021, 33, 2004959.

[26]

W. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. Peng, J. Liu, Angew. Chem. Int. Ed. Engl. 2021, 60, 12931.

[27]

C. Wei, R. Wang, Z. Wu, Q. Luo, Z. Jiang, L. Ming, J. Yang, L. Wang, C. Yu, Chin. Chem. Lett. 2023,

[28]

Y. Xiao, K. Turcheniuk, A. Narla, A. Y. Song, X. Ren, A. Magasinski, A. Jain, S. Huang, H. Lee, G. Yushin, Nat. Mater. 2021, 20, 984.

[29]

J. Chen, X. Deng, Y. Gao, Y. Zhao, X. Kong, Q. Rong, J. Xiong, D. Yu, S. Ding, Angew. Chem. Int. Ed. Engl. 2023, 62, e202307255.

[30]

D. H. S Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Science 2021, 373, 1494.

[31]

T. Shi, Q. Tu, Y. Tian, Y. Xiao, L. J. Miara, O. Kononova, G. Ceder, Adv. Energy Mater. 2019, 10, 1902881.

[32]

W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2017, 9, 17835.

[33]

R. Okuno, M. Yamamoto, A. Kato, M. Takahashi, J. Electrochem. Soc. 2020, 167, 140522.

[34]

M. Rana, Y. Rudel, P. Heuer, E. Schlautmann, C. Rosenbach, M. Y. Ali, H. Wiggers, A. Bielefeld, W. G. Zeier, ACS Energy Lett. 2023, 8, 3196.

[35]

J. Zhao, C. Zhao, J. Zhu, X. Liu, J. Yao, B. Wang, Q. Dai, Z. Wang, J. Chen, P. Jia, Y. Li, S. J. Harris, Y. Yang, Y. Tang, L. Zhang, F. Ding, J. Huang, Nano Lett. 2022, 22, 411.

[36]

F. Strauss, T. Bartsch, L. de Biasi, A. Y. Kim, J. Janek, P. Hartmann, T. Brezesinski, ACS Energy Lett. 2018, 3, 992.

[37]

Z. Zhang, W. Jia, Y. Feng, R. Ai, J. Yu, X. Bie, X. Zhai, T. Jiang, S. Yao, F. Du, Energy Environ. Sci. 2023, 16, 4453.

[38]

C. Shen, Y. Liu, Y. Shi, X. Liu, Y. Jiang, S. Huang, J. Zhang, B. Zhao, J. Colloid Interface Sci. 2023, 653, 85.

[39]

N. Shen, N. Chen, Y. Pang, S. Zang, C. Hu, Z. Tang, Q. Lai, J. Zheng, Y. Liang, Appl. Surf. Sci. 2023, 608, 155153.

[40]

D. H. Kim, H. A. Lee, Y. B. Song, J. W. Park, S.-M. Lee, Y. S. Jung, J. Power Sources 2019, 426, 143.

[41]

A. Banerjee, K. H. Park, J. W. Heo, Y. J. Nam, C. K. Moon, S. M. Oh, S. T. Hong, Y. S. Jung, Angew. Chem. Int. Ed. Engl. 2016, 55, 9634.

[42]

D. H. Kim, D. Y. Oh, K. H. Park, Y. E. Choi, Y. J. Nam, H. A. Lee, S. M. Lee, Y. S. Jung, Nano Lett. 2017, 17, 3013.

[43]

Y. Shi, P. Jiang, S. Wang, W. Chen, B. Wei, X. Lu, G. Qian, W. H. Kan, H. Chen, W. Yin, Y. Sun, X. Lu, Nat. Commun. 2022, 13, 7888.

[44]

D. Li, L. Dai, X. Ren, F. Ji, Q. Sun, Y. Zhang, L. Ci, Energy Environ. Sci. 2021, 14, 424.

[45]

F. Xiong, Y. Jiang, L. Cheng, R. Yu, S. Tan, C. Tang, C. Zuo, Q. An, Y. Zhao, J. J. Gaumet, L. Mai, Interdiscip. Mater. 2022, 1, 140.

[46]

J. Wang, J. Fang, H. Zhao, Z. Zhang, Z. Li, Carbon 2021, 171, 171.

[47]

J. M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, K. H. Oh, S. H. Lee, Adv. Energy Mater. 2016, 6, 1600495.

[48]

P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, L. F. Nazar, Angew. Chem. Int. Ed. 2019, 58, 8681.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/