Active Cu and Fe Nanoparticles Codecorated Ruddlesden–Popper-Type Perovskite as Solid Oxide Electrolysis Cells Cathode for CO2 Splitting

Dongliang Liu , Hang Shang , Chuan Zhou , Jie Miao , Daxiang Xue , Zeping Chen , Meijuan Fei , Fengli Liang , Qiang Niu , Ran Ran , Wei Zhou , Zongping Shao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12717

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12717 DOI: 10.1002/eem2.12717
RESEARCH ARTICLE

Active Cu and Fe Nanoparticles Codecorated Ruddlesden–Popper-Type Perovskite as Solid Oxide Electrolysis Cells Cathode for CO2 Splitting

Author information +
History +
PDF

Abstract

Solid oxide electrolysis cells (SOECs), displaying high current density and energy efficiency, have been proven to be an effective technique to electrochemically reduce CO2 into CO. However, the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs. Hence, it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs. Herein, a reduced perovskite oxide, Pr0.35Sr0.6Fe0.7Cu0.2Mo0.1O3-δ (PSFCM0.35), is developed as SOECs cathode to electrolyze CO2. After reduction in 10% H2/Ar, Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice, resulting in a phase transformation from cubic perovskite to Ruddlesden–Popper (RP) perovskite with more oxygen vacancies. The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO2 adsorption and dissociation on the cathode surface. The significantly strengthened CO2 adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared (FT-IR) spectra. Symmetric cells with the reduced PSFCM0.35 (R-PSFCM0.35) electrode exhibit a low polarization resistance of 0.43 Ω cm2 at 850 °C. Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm-2 at 850 °C and 1.6 V. In addition, the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800 °C with an applied constant current density of 600 mA cm-2 for 100 h.

Keywords

cathode / CO 2 reduction / nanoparticles decoration / solid oxide electrolysis cells

Cite this article

Download citation ▾
Dongliang Liu, Hang Shang, Chuan Zhou, Jie Miao, Daxiang Xue, Zeping Chen, Meijuan Fei, Fengli Liang, Qiang Niu, Ran Ran, Wei Zhou, Zongping Shao. Active Cu and Fe Nanoparticles Codecorated Ruddlesden–Popper-Type Perovskite as Solid Oxide Electrolysis Cells Cathode for CO2 Splitting. Energy & Environmental Materials, 2024, 7(5): e12717 DOI:10.1002/eem2.12717

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. D. Ebbesen, S. H. Jensen, A. Hauch, M. B. Mogensen, Chem. Rev. 2014, 114, 10697.

[2]

Y. Song, X. Zhang, K. Xie, G. Wang, X. Bao, Adv. Mater. 2019, 31, 1902033.

[3]

Y. Zheng, Z. Chen, J. Zhang, Electrochem. Energy Rev. 2021, 4, 508.

[4]

L. Ye, K. Xie, J. Energy Chem. 2021, 54, 736.

[5]

X. Zhang, B. Liu, Y. Yang, J. Li, J. Li, Y. Zhao, L. Jia, Y. Sun, Chin. Chem. Lett. 2023, 34, 108035.

[6]

Y. Jiang, F. Chen, C. Xia, J. Power Sources 2021, 493, 229713.

[7]

F. He, M. Hou, F. Zhu, D. Liu, H. Zhang, F. Yu, Y. Zhou, Y. Ding, M. Liu, Y. Chen, Adv. Energy Mater. 2022, 12, 2202175.

[8]

S. Hu, B. Pang, L. Zhang, Z. Cao, P. Zhang, Y. Ding, R. O’Hayre, X. Zhu, W. Yang, Appl. Catal. B 2023, 324, 122239.

[9]

X. Zhang, Y. Song, G. Wang, X. Bao, J. Energy Chem. 2017, 26, 839.

[10]

L. Zhang, S. Hu, X. Zhu, W. Yang, J. Energy Chem. 2017, 26, 593.

[11]

Y. Zang, P. Wei, H. Li, D. Gao, G. Wang, Electrochem. Energy Rev. 2022, 5, 29.

[12]

Y. Yang, Y. Li, Y. Jiang, M. Zheng, T. Hong, X. Wu, C. Xia, Electrochim. Acta 2018, 284, 159.

[13]

L. Ye, K. Zhu, Y. Jiang, S. Zhang, R. Peng, C. Xia, J. Mater. Chem. A 2023, 11, 10646.

[14]

H. M. Ansari, P. K. Addo, S. Mulmi, H. Yuan, G. A. Botton, V. Thangadurai, V. I. Birss, ACS Appl. Mater. Interfaces 2022, 14, 13388.

[15]

X. Xi, Y. Fan, J. Zhang, J.-L. Luo, X.-Z. Fu, J. Mater. Chem. A 2022, 10, 2509.

[16]

M. Yang, Z. Yao, S. Liu, J. Wang, A. Sun, H. Xu, G. Yang, R. Ran, W. Zhou, G. Xiao, Z. Shao, J. Mater. Sci. Technol. 2023, 164, 160.

[17]

X. Yang, K. Sun, M. Ma, C. Xu, R. Ren, J. Qiao, Z. Wang, S. Zhen, R. Hou, W. Sun, Appl. Catal. B 2020, 272, 118968.

[18]

C. Sun, L. Bian, J. Qi, W. Yu, S. Li, Y. Hou, L. Wang, J. Peng, S. An, J. Power Sources 2022, 521, 230984.

[19]

A. K. Opitz, A. Nenning, C. Rameshan, M. Kubicek, T. Gotsch, R. Blume, M. Havecker, A. Knop-Gericke, G. Rupprechter, B. Klotzer, J. Fleig, ACS Appl. Mater. Interfaces 2017, 9, 35847.

[20]

D. J. Deka, J. Kim, S. Gunduz, D. Jain, Y. Shi, J. T. Miller, A. C. Co, U. S. Ozkan, Appl. Catal. B 2021, 283, 119642.

[21]

M. Hubert, J. Laurencin, P. Cloetens, B. Morel, D. Montinaro, F. Lefebvre-Joud, J. Power Sources 2018, 397, 240.

[22]

Y. Tao, S. D. Ebbesen, M. Mogensen, ECS Trans. 2013, 50, 139.

[23]

Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang, L. Fu, Q. Deng, H. Zhao, C. Yin, K. Wu, J. Energy Chem. 2023, 84, 219.

[24]

L. Zhang, C. Xu, W. Sun, R. Ren, X. Yang, Y. Luo, J. Qiao, Z. Wang, S. Zhen, K. Sun, Sep. Purif. Technol. 2022, 298, 121475.

[25]

C. Zhou, X. Wang, D. Liu, M. Fei, J. Dai, D. Guan, Z. Hu, L. Zhang, Y. Wang, W. Wang, R. O’Hayre, S. P. Jiang, W. Zhou, M. Liu, Z. Shao, Energy Environ. Mater. 2023,

[26]

W. Li, M. Li, Y. Guo, Z. Hu, C. Zhou, H. E. A. Brand, V. K. Peterson, C. W. Pao, H. J. Lin, C. T. Chen, W. Zhou, Z. Shao, Adv. Funct. Mater. 2022, 33, 2210496.

[27]

Y. Li, X. Chen, Y. Yang, Y. Jiang, C. Xia, ACS Sustain. Chem. Eng. 2017, 5, 11403.

[28]

H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, H. Matsumoto, N. Ta, C. Zeng, Q. Fu, G. Wang, X. Bao, Nat. Commun. 2021, 12, 5665.

[29]

H. Lv, L. Lin, X. Zhang, D. Gao, Y. Song, Y. Zhou, Q. Liu, G. Wang, X. Bao, J. Mater. Chem. A 2019, 7, 11967.

[30]

H. Lv, Y. Zhou, X. Zhang, Y. Song, Q. Liu, G. Wang, X. Bao, J. Energy Chem. 2019, 35, 71.

[31]

X. Yang, K. Sun, W. Sun, M. Ma, R. Ren, J. Qiao, Z. Wang, S. Zhen, C. Xu, J. Eur. Ceram. Soc. 2023, 43, 3414.

[32]

X. Gao, L. Ye, K. Xie, J. Power Sources 2023, 561, 232740.

[33]

H. Chang, W. Tian, H. Chen, S.-D. Li, Z. Shao, Electrochim. Acta 2023, 439, 141699.

[34]

Y. Li, M. Singh, Z. Zhuang, Y. Jing, F. Li, K. Maliutina, C. He, L. Fan, Sci. China Mater. 2020, 64, 1114.

[35]

J. Zhu, W. Zhang, Y. Li, W. Yue, G. Geng, B. Yu, Appl. Catal. B 2020, 268, 118389.

[36]

J. Choi, S. Park, H. Han, M. Kim, M. Park, J. Han, W. B. Kim, J. Mater. Chem. A 2021, 9, 8740.

[37]

L. Lu, D. He, R. Fang, C. Ni, J. T. S. Irvine, J. Power Sources 2023, 580, 233424.

[38]

Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng, C. Xia, Adv. Energy Mater. 2018, 9, 1803156.

[39]

S. Zhang, Y. Jiang, H. Han, Y. Li, C. Xia, ACS Appl. Mater. Interfaces 2022, 14, 28854.

[40]

M. Liang, Y. Zhu, Y. Song, D. Guan, Z. Luo, G. Yang, S. P. Jiang, W. Zhou, R. Ran, Z. Shao, Adv. Mater. 2022, 34, 2106379.

[41]

W. Cui, X. Yang, M. Ma, J. Sun, R. Ren, C. Xu, J. Qiao, W. Sun, K. Sun, Z. Wang, Ceram. Int. 2023, 49, 27214.

[42]

L. Chen, J. Xu, X. Wang, K. Xie, Int. J. Hydrog. Energy 2020, 45, 11901.

[43]

X. Hu, K. Xie, J. Power Sources 2019, 430, 20.

[44]

C. Zhu, L. Hou, S. Li, L. Gan, K. Xie, J. Power Sources 2017, 363, 177.

[45]

L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang, J. Qiao, Z. Wang, S. Zhen, K. Sun, Appl. Catal. B 2022, 317, 121754.

[46]

J. Lv, W. Sun, C. Xu, X. Yang, M. Ma, L. Zhang, S. Zhang, J. Qiao, S. Zhen, K. Sun, Sep. Purif. Technol. 2022, 294, 121127.

[47]

S. Lee, M. Kim, K. T. Lee, J. T. S. Irvine, T. H. Shin, Adv. Energy Mater. 2021, 11, 2100339.

[48]

X. Xi, X. Liu, L. Huang, J. Liu, B.-W. Zhang, G. Rothenberg, X.-Z. Fu, J.-L. Luo, Mater. Rep. Energy 2023, 3, 100179.

[49]

P. Caliandro, A. Nakajo, S. Diethelm, J. Van Herle, J. Power Sources 2019, 436, 226838.

[50]

M. Ma, X. Yang, C. Xu, R. Ren, J. Qiao, W. Sun, Z. Wang, K. Sun, Sep. Purif. Technol. 2022, 296, 121411.

[51]

H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto, N. Ta, C. Zeng, G. Wang, X. Bao, Angew. Chem.-Int. Edit. 2020, 59, 15968.

[52]

H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto, C. Zeng, N. Ta, W. Liu, D. Gao, G. Wang, X. Bao, Adv. Mater. 2020, 32, 1906193.

[53]

D. Zhang, W. Yang, Z. Wang, C. Ren, Y. Wang, M. Ding, T. Liu, Sep. Purif. Technol. 2023, 304, 122287.

[54]

M. Xu, C. Liu, A. B. Naden, H. Früchtl, M. Bühl, J. T. S. Irvine, Small 2022, 19, 2204682.

[55]

Y. Li, B. Hu, C. Xia, W. Q. Xu, J. P. Lemmon, F. Chen, J. Mater. Chem. A 2017, 5, 20833.

[56]

Y. Shen, T. Liu, R. Li, H. Lv, N. Ta, X. Zhang, Y. Song, Q. Liu, W. Feng, G. Wang, X. Bao, Natl. Sci. Rev. 2023, 10, nwad078.

[57]

D. Zhang, J. Zhou, Y. Luo, Y. Wang, X. Zhang, X. Chen, T. Liu, M. Ding, J. Power Sources 2023, 587, 233705.

[58]

V. Duboviks, R. C. Maher, M. Kishimoto, L. F. Cohen, N. P. Brandon, G. J. Offer, Phys. Chem. Chem. Phys. 2014, 16, 13063.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/