High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation

Pan Li , Jiang Zhong , Yanqing Fu , Zhentao Du , Lan Jiang , Yi Han , Jan Luxa , Bing Wu , Zdenek Sofer , Qiliang Wei , Weiyou Yang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12716

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12716 DOI: 10.1002/eem2.12716
RESEARCH ARTICLE

High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation

Author information +
History +
PDF

Abstract

Anion exchange membrane fuel cell (AEMFC) technology is attracting intensive attention, due to its great potential by using non-precious-metal catalysts (NPMCs) in the cathode and cheap bipolar plate materials in alkaline media. However, in such case, the kinetics of hydrogen oxidation reaction (HOR) in the anode is two orders of magnitude sluggish than that of acidic electrolytes, which is recognized as the grand challenge in this field. Herein, we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers (Ni@NG) using a facile pyrolysis strategy. Based on the density functional theory calculations and electrochemical performance analysis, it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates, thus enabling the fundamentally enhanced activity for HOR with robust stability. As a proof of concept, the resultant Ni@NG sample as the anode with a low loading (1.8 mg cm-2) in AEMFCs delivers a high peak power density of 500 mW cm-2, outperforming all of those of NPMC-based analogs ever reported.

Keywords

anion-exchange-membrane fuel cells / density functional calculations / hydrogen oxidation reaction / Ni-based non-precious-metal catalysts / pyridinic N-doped graphene

Cite this article

Download citation ▾
Pan Li, Jiang Zhong, Yanqing Fu, Zhentao Du, Lan Jiang, Yi Han, Jan Luxa, Bing Wu, Zdenek Sofer, Qiliang Wei, Weiyou Yang. High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation. Energy & Environmental Materials, 2024, 7(5): e12716 DOI:10.1002/eem2.12716

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, Energy Environ. Sci. 2022, 15, 2288.

[2]

Q. Zhang, J. Guan, Energy Environ. Mater. 2021, 4, 307.

[3]

D. A. Cullen, K. Neyerlin, R. K. Ahluwalia, R. Mukundan, K. L. More, R. L. Borup, A. Z. Weber, D. J. Myers, A. Kusoglu, Nat. Energy 2021, 6, 462.

[4]

X. Meng, X. Deng, L. Zhou, B. Hu, W. Tan, W. Zhou, M. Liu, Z. Shao, Energy Environ. Mater. 2021, 4, 126.

[5]

K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361.

[6]

X. Wu, N. Chen, H. A. Klok, Y. M. Lee, X. Hu, Angew. Chem. Int. Ed. 2022, 134, e202114892.

[7]

H. Adabi, A. Shakouri, N. U. Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, W. E. Mustain, Nat. Energy 2021, 6, 834.

[8]

N. Ramaswamy, S. Mukerjee, Chem. Rev. 2019, 119, 11945.

[9]

M. M. Hossen, M. S. Hasan, M. R. I. Sardar, J. B. Haider, K. Tammeveski, P. Atanassov, Appl. Catal., B 2022, 325, 121733.

[10]

Q. Wei, X. Cao, P. Veh, A. Konovalova, P. Mardle, P. Overton, S. Cassegrain, S. Vierrath, M. Breitwieser, S. Holdcroft, Sustainable Energy Fuels 2022, 6, 3551.

[11]

Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 2022, 51, 9620.

[12]

Y. Men, X. Su, P. Li, Y. Tan, C. Ge, S. Jia, L. Li, J. Wang, G. Cheng, L. Zhuang, S. Chen, W. Luo, J. Am. Chem. Soc. 2022, 144, 12661.

[13]

Q. Wei, M. Cherif, G. Zhang, A. Almesrati, J. Chen, M. Wu, N. Komba, Y. Hu, T. Regier, T.-K. Sham, F. Vidal, S. Sun, Nano Energy, 2019, 62, 700.

[14]

M. Rauf, J. Wang, S. Handschuh-Wang, Z. Zhou, W. Iqbal, S. A. Khan, L. Zhuang, X. Ren, Y. Li, S. Sun, Prog. Nat. Sci.: Mater. Int. 2022, 32, 27.

[15]

S. Hou, H. Wang, J. Ren, C. Yao, L. Shi, S. Liao, Prog. Nat. Sci.: Mater. Int. 2022, 32, 150.

[16]

L. Su, D. Gong, Y. Jin, D. Wu, W. Luo, J. Energy Chem. 2022, 66, 107.

[17]

Z.-C. Yao, T. Tang, Z. Jiang, L. Wang, J.-S. Hu, L.-J. Wan, ACS Nano 2022, 16, 5153.

[18]

F.-Y. Gao, M.-R. Gao, Acc. Chem. Res. 2023, 56, 1445.

[19]

A. Roy, M. R. Talarposhti, S. J. Normile, I. V. Zenyuk, V. De Andrade, K. Artyushkova, A. Serov, P. Atanassov, Sustainable Energy Fuels 2018, 2, 2268.

[20]

M. Wang, H. Yang, J. Shi, Y. Chen, Y. Zhou, L. Wang, S. Di, X. Zhao, J. Zhong, T. Cheng, W. Zhou, Y. Li, Angew. Chem. Int. Ed. 2021, 133, 5835.

[21]

B. Xiong, W. Zhao, H. Tian, W. Huang, L. Chen, J. Shi, Chem. Eng. J. 2022, 432, 134189.

[22]

Y. Duan, Z.-Y. Yu, L. Yang, L.-R. Zheng, C.-T. Zhang, X.-T. Yang, F.-Y. Gao, X.-L. Zhang, X. Yu, R. Liu, H.-H. Ding, C. Gu, X.-S. Zheng, L. Shi, J. Jiang, J.-F. Zhu, M.-R. Gao, S.-H. Yu, Nat. Commun. 2020, 11, 4789.

[23]

S. Qin, Y. Duan, X.-L. Zhang, L.-R. Zheng, F.-Y. Gao, P.-P. Yang, Z.-Z. Niu, R. Liu, Y. Yang, X.-S. Zheng, J.-F. Zhu, M.-R. Gao, Nat. Commun. 2021, 12, 2686.

[24]

F.-Y. Gao, S.-N. Liu, J.-C. Ge, X.-L. Zhang, L. Zhu, Y.-R. Zheng, Y. Duan, S. Qin, W. Dong, X. Yu, R.-C. Bao, P.-P. Yang, Z.-Z. Niu, Z.-G. Ding, W. Liu, S. Lan, M.-R. Gao, Y. Yan, S.-H. Yu, Nat. Catal. 2022, 5, 993.

[25]

X. Zhao, X. Li, L. An, L. Zheng, J. Yang, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202206588.

[26]

L. Su, D. Gong, N. Yao, Y. Li, Z. Li, W. Luo, Adv. Funct. Mater. 2021, 31, 2106156.

[27]

X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 2022, 15, 1234.

[28]

W. Ni, T. Wang, F. Héroguel, A. Krammer, S. Lee, L. Yao, A. Schüler, J. S. Luterbacher, Y. Yan, X. Hu, Nat. Mater. 2022, 21, 804.

[29]

F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen, W. Luo, Angew. Chem. Int. Ed. 2019, 58, 14179.

[30]

Y. Yang, X. Sun, G. Han, X. Liu, X. Zhang, Y. Sun, M. Zhang, Z. Cao, Y. Sun, Angew. Chem. Int. Ed. 2019, 58, 10644.

[31]

F. Yang, P. Han, N. Yao, G. Cheng, S. Chen, W. Luo, Chem. Sci. 2020, 11, 12118.

[32]

L. Gao, Y. Wang, H. Li, Q. Li, N. Ta, L. Zhuang, Q. Fu, X. Bao, Chem. Sci. 2017, 8, 5728.

[33]

R. Ren, C. Ge, Q. Li, G. Wang, L. Xiao, J. Lu, L. Zhuang, J. Power Sources 2023, 556, 232439.

[34]

Y. Gao, H. Peng, Y. Wang, G. Wang, L. Xiao, J. Lu, L. Zhuang, ACS Appl. Mater. Interfaces 2020, 12, 31575.

[35]

Y. Gao, Y. Yang, R. Schimmenti, E. Murray, H. Peng, Y. Wang, C. Ge, W. Jiang, G. Wang, F. J. DiSalvo, D. A. Muller, M. Mavrikakis, L. Xiao, H. D. Abruña, L. Zhuang, Proc. Natl. Acad. Sci. USA 2022, 119, e2119883119.

[36]

J. Wang, X. Dong, J. Liu, W. Li, L. T. Roling, J. Xiao, L. Jiang, ACS Catal. 2021, 11, 7422.

[37]

Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv. Mater. 2017, 29, 1605957.

[38]

T. Wang, Q. Zhou, X. Wang, J. Zheng, X. Li, J. Mater. Chem. A 2015, 3, 16435.

[39]

J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental Concepts in Heterogeneous Catalysis, John Wiley & Sons, Hoboken, NJ 2014.

[40]

A. J. Medford, P. G. Moses, K. W. Jacobsen, A. A. Peterson, ACS Catal. 2022, 12, 9679.

[41]

L. Su, Y. Jin, D. Gong, X. Ge, W. Zhang, X. Fan, W. Luo, Angew. Chem. Int. Ed. 2023, 135, e202215585.

[42]

J.-T. Ren, Y.-S. Wang, Y.-J. Song, L. Chen, Z.-Y. Yuan, Appl. Catal., B 2022, 309, 121279.

[43]

C. Sun, P. Zhao, Y. Yang, Z. Li, W. Sheng, ACS Catal. 2022, 12, 11830.

[44]

D. Strmcnik, K. Kodama, D. V. D. van der Vliet, J. Greeley, V. R. Stamenkovic, N. Marković, Nat. Chem. 2009, 1, 466.

[45]

J. Zheng, J. Nash, B. Xu, Y. Yan, J. Electrochem. Soc. 2018, 165, H27.

[46]

Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan, Z. Zhuang, Nat. Commun. 2020, 11, 5651.

[47]

X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066.

[48]

B. Zhang, B. Zhang, G. Zhao, J. Wang, D. Liu, Y. Chen, L. Xia, M. Gao, Y. Liu, W. Sun, H. Pan, Nat. Commun. 2022, 13, 5894.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/