3D-Printed Monolith Metallic Ni–Mo Electrodes for Ultrahigh Current Hydrogen Evolution

Yanran Xun , Hongmei Jin , Yuemeng Li , Shixiang Zhou , Kaixi Zhang , Xi Xu , Win Jonhson , Shuai Chang , Teck Leong Tan , Jun Ding

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12714

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12714 DOI: 10.1002/eem2.12714
RESEARCH ARTICLE

3D-Printed Monolith Metallic Ni–Mo Electrodes for Ultrahigh Current Hydrogen Evolution

Author information +
History +
PDF

Abstract

In this work, we reported a series of monolithic 3D-printed Ni–Mo alloy electrodes for highly efficient water splitting at high current density (1500 mA cm-2) with excellent stability, which provides a solution to scale up Ni–Mo catalysts for HER to industry use. All possible Ni–Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure, and they were investigated through both experiment and simulation, and the optimal NiMo phase shows the best performance. Density functional theory (DFT) calculations elucidate that the NiMo phase has the lowest H2O dissociation energy, which further explains the exceptional performance of NiMo. In addition, the microporosity was modulated via controlled thermal treatment, indicating that the 1100 °C sintered sample has the best catalytic performance, which is attributed to the high electrochemically active surface area (ECSA). Finally, the four different macrostructures were achieved by 3D printing, and they further improved the catalytic performance. The gyroid structure exhibits the best catalytic performance of driving 500 mA cm-2 at a low overpotential of 228 mV and 1500 mA cm-2 at 325 mV, as it maximizes the efficient bubble removal from the electrode surface, which offers the great potential for high current density water splitting.

Keywords

3D-printed electrode / Ni–Mo catalyst / phase tuning / ultra-high current density HER

Cite this article

Download citation ▾
Yanran Xun, Hongmei Jin, Yuemeng Li, Shixiang Zhou, Kaixi Zhang, Xi Xu, Win Jonhson, Shuai Chang, Teck Leong Tan, Jun Ding. 3D-Printed Monolith Metallic Ni–Mo Electrodes for Ultrahigh Current Hydrogen Evolution. Energy & Environmental Materials, 2024, 7(5): e12714 DOI:10.1002/eem2.12714

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. A. A Shah, Int. J. Hydrog. Energy 2020, 45, 15841.

[2]

Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, K. R. Khalilpour, Renew. Sust. Energ. Rev. 2020, 120, 109620.

[3]

A. Kovač, M. Paranos, D. Marciuš, Int. J. Hydrog. Energy 2021, 46, 10016.

[4]

S. E. Hosseini, M. A. Wahid, Renew. Sust. Energ. Rev. 2016, 57, 850.

[5]

L. A. King, M. A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T. R. Hellstern, K. Ayers, T. F. Jaramillo, Nat. Nanotechnol. 2019, 14, 1071.

[6]

P. Chen, X. Hu, Adv. Energy Mater. 2020, 10, 2002285.

[7]

S. Anantharaj, V. Aravindan, Adv. Energy Mater. 2020, 10, 1902666.

[8]

Z.-Y. Zhang, H. Tian, L. Bian, S.-Z. Liu, Y. Liu, Z.-L. Wang, J. Energy Chem. 2023, 83, 90.

[9]

M. Luo, J. Yang, X. Li, M. Eguchi, Y. Yamauchi, Z.-L. Wang, Chem. Sci. 2023, 14, 3400.

[10]

A. Damian, S. Omanovic, J. Power Sources 2006, 158, 464.

[11]

N. N. T Pham, S. G. Kang, H.-J. Kim, C. Pak, B. Han, S. G. Lee, Appl. Surf. Sci. 2021, 537, 147894.

[12]

M. Fang, W. Gao, G. Dong, Z. Xia, S. Yip, Y. Qin, Y. Qu, J. C. Ho, Nano Energy 2016, 27, 247.

[13]

Z. Chang, L. Zhu, J. Zhao, P. Chen, D. Chen, H. Gao, Int. J. Hydrog. Energy 2021, 46, 3493.

[14]

J. Huang, Y. Jiang, T. An, M. Cao, J. Mater. Chem. A 2020, 8, 25465.

[15]

J. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Chem. Mater. 2016, 28, 6017.

[16]

N. Han, K. R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V. S. Batista, W. Liu, X. Sun, Nat. Commun. 2018, 9, 924.

[17]

P. Raveendran, J. Fu, S. L. Wallen, J. Am. Chem. Soc. 2003, 125, 13940.

[18]

R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 2012, 112, 2373.

[19]

H. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074.

[20]

C.-Y. Lee, A. C. Taylor, A. Nattestad, S. Beirne, G. G. Wallace, Joule 2019, 3, 1835.

[21]

A. Ambrosi, M. Pumera, Chem. Soc. Rev. 2016, 45, 2740.

[22]

X. Xu, G. Fu, Y. Wang, Q. Cao, Y. Xun, C. Li, C. Guan, W. Huang, Nano Lett. 2023, 23, 629.

[23]

F. Rocha, R. Delmelle, C. Georgiadis, J. Proost, Adv. Energy Mater. 2023, 13, 2203087.

[24]

I. Sullivan, H. Zhang, C. Zhu, M. Wood, A. J. Nelson, S. E. Baker, C. M. Spadaccini, T. Van Buuren, M. Lin, E. B. Duoss, S. Liang, C. Xiang, ACS Appl. Mater. Interfaces 2021, 13, 20260.

[25]

S. Chang, X. Huang, C. Y. Aaron Ong, L. Zhao, L. Li, X. Wang, J. Ding, J. Mater. Chem. A 2019, 7, 18338.

[26]

M. J. Gómez, L. A. Diaz, E. A. Franceschini, G. I. Lacconi, G. C. Abuin, J. Appl. Electrochem. 2019, 49, 1227.

[27]

I. Khalfallah, A. Aning, Presented at TMS 2014:143rd Ann. Meet. Exhibit. San Diego Convention Center, San Diego, CA, February 2014.

[28]

I. C. Man, H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159.

[29]

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun. 2017, 8, 15437.

[30]

S. Chang, Y. Zhang, B. Zhang, X. Cao, L. Zhang, X. Huang, W. Lu, C. Y. A. Ong, S. Yuan, C. Li, Y. Huang, K. Zeng, L. Li, W. Yan, J. Ding, Adv. Energy Mater. 2021, 11, 2100968.

[31]

X. Qin, L. Zhang, G.-L. Xu, S. Zhu, Q. Wang, M. Gu, X. Zhang, C. Sun, P. B. Balbuena, K. Amine, M. Shao, ACS Catal. 2019, 9, 9614.

[32]

L. Zhu, C. Liu, X. Wen, Y.-W. Li, H. Jiao, Cat. Sci. Technol. 2019, 9, 199.

[33]

A. Mohsenzadeh, K. Bolton, T. Richards, Surf. Sci. 2014,

[34]

C. C. L McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.

[35]

G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.

[36]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[37]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[38]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[39]

M. Methfessel, A. T. Paxton, Phys. Rev. B 1989, 40, 3616.

[40]

A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.

[41]

Y. Wang, C. Woodward, S. H. Zhou, Z.-K. Liu, L.-Q. Chen, Scr. Mater. 2005, 52, 17.

[42]

C. Siioeiaker, P. Shoemaker, Acta Cryst. 1963, 16, 13.

[43]

K. Hu, M. Wu, S. Hinokuma, T. Ohto, M. Wakisaka, J. Fujita, Y. Ito, J. Mater. Chem. A 2019, 7, 2156.

[44]

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.

[45]

X. Yu, Z.-Y. Yu, X.-L. Zhang, Y.-R. Zheng, Y. Duan, Q. Gao, R. Wu, B. Sun, M.-R. Gao, G. Wang, S.-H. Yu, J. Am. Chem. Soc. 2019, 141, 7537.

[46]

L. Yu, I. K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Nano Energy 2018, 53, 492.

[47]

H. Sun, X. Xu, Z. Yan, X. Chen, L. Jiao, F. Cheng, J. Chen, J. Mater. Chem. A 2018, 6, 22062.

[48]

Y. Luo, L. Tang, U. Khan, Q. Yu, H.-M. Cheng, X. Zou, B. Liu, Nat. Commun. 2019, 10, 269.

[49]

S. Xue, W. Zhang, Q. Zhang, J. Du, H.-M. Cheng, W. Ren, Carbon 2020, 165, 122.

[50]

C. Huang, L. Yu, W. Zhang, Q. Xiao, J. Zhou, Y. Zhang, P. An, J. Zhang, Y. Yu, Appl. Catal. B Environ. 2020, 276, 119137.

[51]

X. Liu, Y. Yao, H. Zhang, L. Pan, C. Shi, X. Zhang, Z.-F. Huang, J.-J. Zou, ACS Sustain. Chem. Eng. 2020, 8, 17828.

[52]

S. Parvin, A. Kumar, A. Ghosh, S. Bhattacharyya, Chem. Sci. 2020, 11, 3893.

[53]

H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B Environ. 2020, 261, 118240.

[54]

X. Xiao, X. Wang, X. Jiang, S. Song, D. Huang, L. Yu, Y. Zhang, S. Chen, M. Wang, Y. Shen, Z. Ren, Small Methods 2020, 4, 1900796.

[55]

L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang, Z. Li, X. Zhang, C. Yuan, L. Lei, Y. Hou, ACS Appl. Mater. Interfaces 2019, 11, 27743.

[56]

X.-Y. Zhang, Y.-R. Zhu, Y. Chen, S.-Y. Dou, X.-Y. Chen, B. Dong, B.-Y. Guo, D.-P. Liu, C.-G. Liu, Y.-M. Chai, Chem. Eng. J. 2020, 399, 125831.

[57]

V. R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Jung, S. C. Yi, Adv. Energy Mater. 2020, 10, 1904020.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/